Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 81-91    DOI: 10.11901/1005.3093.2023.221
  研究论文 本期目录 | 过刊浏览 |
冷拉拔钢丝横截面应变不均匀性的晶体塑性研究
赵勇1,2, 刘腾远1,2, 贾春妮1,2, 杨朕聃1,2, 陈响军1,2, 王培1,2(), 李殿中1,2
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire
ZHAO Yong1,2, LIU Tengyuan1,2, JIA Chunni1,2, YANG Zhendan1,2, CHEN Xiangjun1,2, WANG Pei1,2(), LI Dianzhong1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

赵勇, 刘腾远, 贾春妮, 杨朕聃, 陈响军, 王培, 李殿中. 冷拉拔钢丝横截面应变不均匀性的晶体塑性研究[J]. 材料研究学报, 2024, 38(2): 81-91.
Yong ZHAO, Tengyuan LIU, Chunni JIA, Zhendan YANG, Xiangjun CHEN, Pei WANG, Dianzhong LI. Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire[J]. Chinese Journal of Materials Research, 2024, 38(2): 81-91.

全文: PDF(4897 KB)   HTML
摘要: 

建立钢丝多道次拉拔宏观有限元和珠光体团等效晶体塑性有限元相耦合的多尺度模型,研究了冷拉拔钢丝横截面的应变分布、应变路径的演化规律和应变量及应变路径对材料强化效应的影响。结果表明,钢丝冷拉拔后其横截面上的塑性应变量呈现出从心部到表面先升高后降低的分布特征,钢丝心部区域的应变路径接近等比例加载,而靠近表面区域的应变路径则比较曲折。曲折多变的应变路径使更多的滑移系开动,从而产生额外的强化最终使材料的硬度提高。横截面不同位置的应变量和应变路径差异的综合作用,使冷拔钢丝横截面上次表层的硬度最高。

关键词 材料合成与加工工艺应变不均匀性晶体塑性有限元冷拉拔钢丝应变路径    
Abstract

A macroscopic finite element model of multi-pass cold drawing coupled with a microscopic crystal plasticity finite element model of pearlite has been established in this study. The strain distribution and strain path of the cold drawn steel wire have been simulated, and the influence of them on the material strengthening have been analyzed. It is found that the plastic strain on the cross-section of the steel wire increases first and then decreases from the core to the surface after cold drawing. Meanwhile, the strain path in the core area of the steel wire is close to proportional loading, while the strain path near the surface is tortuous. The tortuous strain path can drive more slip systems to act, causing additional strengthening and ultimately increasing hardness. Under the comprehensive effect of the difference of strain and strain path in different areas of the cross-section, the subsurface hardness of the cold-drawn steel wire is the highest.

Key wordssynthesizing and processing technics for materials    non-uniformity of strain    crystal plasticity finite element method    cold drawn steel wire    strain path
收稿日期: 2023-04-11     
ZTFLH:  TG356.4+6  
基金资助:国家自然科学基金(52031013)
通讯作者: 王培,研究员,pwang@imr.ac.cn,研究方向为先进钢铁材料
Corresponding author: WANG Pei, Tel: (024)83970106, E-mail: pwang@imr.ac.cn
作者简介: 赵 勇,男,1998年生,硕士生
Passes0123456
Diameter / mm10.09.07.97.06.25.65.1
Reduction ratio-19%23%22%22%18%17%
Average strain-0.210.260.240.240.200.19
表1  拉拔工艺参数
图1  拉拔的二维轴对称模型
图2  反求法中吻合良好的工程应力-工程应变曲线和仿真模拟使用的材料真应力-真应变曲线
图3  二维珠光体团RVE模型 以及实验和模拟的真应力-真应变曲线
ParameterSymbolValue
Elastic moduliC11197000 MPa
C12134000 MPa
C44105000 MPa
Rate sensitivity parametern10 [27]
Reference strain ratea˙8.74 × 10-4 s-1
Burgers vectorb2.48 × 10-7 mm [28,29]
Dislocation densitygminter0.6
evolution coefficientgimmob0.035
grecov80
gsour10-5
Initial dislocation densityρim0240000 mm-2
ρm0240000 mm-2
Static yield stressτy120 MPa [30,31]
Shear moduliG115022 MPa
Interaction coefficientaαα0.8
aαβ0.6
表2  计算等效珠光体材料的晶体塑性需要的参数
图4  拉拔后钢丝横截面上轴向和径向应变的分布以及等效应变分布和RVE模型计算选点
图5  拉拔模拟所得钢丝表面和心部的应变路径图及钢丝表面轴向和径向应变随时间变化曲线
图6  6个代表点处RVE模型中滑移系总剪切应变和不可动位错密度两个指标的平均值
图7  钢丝横截面上维氏硬度的测量结果
图8  A微区平均Mises等效应力随时间变化图和第1道次中各点Mises等效应力峰值对比图
图9  4个点对应的RVE模型在1道次末的滑移系开动情况分布
图10  选取典型晶粒的示意图
NumberModel AModel E
828%0
944%0
1016%22%
114%61%
129%16%
表3  A、E两模型中代表性晶粒上的滑移系开动数目分布
图11  第一道次末代表性晶粒上的微观响应
图12  A、E两点在代表性晶粒上的各滑移系平均强度随各道次进行的变化
1 Tu Y Y. The microstructure and mechanical performance of high speed severe cold drawn steel wire [D]. Nanjing: Southeast University, 2006
1 涂益友. 高速大应变冷拔钢丝的组织和力学性能 [D]. 南京: 东南大学, 2006
2 Ma M G. Influence of drawing process and die on mechanical properties of steel wire [D]. Guiyang: Guizhou University, 2006
2 马明刚. 拉拔工艺及模具对钢丝力学性能的影响 [D]. 贵阳: 贵州大学, 2006
3 Nam W J, Bae C M. Void initiation and microstructural changes during wire drawing of pearlitic steels [J]. Mater. Sci. Eng., 1995, 203A(1-2) : 278
4 Borchers C, Kirchheim R. Cold-drawn pearlitic steel wires [J]. Prog. Mater. Sci., 2016, 82: 405
doi: 10.1016/j.pmatsci.2016.06.001
5 Qu X, Bao S Q, Zhao G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing [J]. J. Mater. Sci. Eng., 2021, 39(6): 937
5 瞿 熙, 鲍思前, 赵 刚 等. 高碳钢丝拉拔过程中的组织性能演变 [J]. 材料科学与工程学报, 2021, 39(6): 937
6 Zhang X D, Godfrey A, Huang X X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire [J]. Acta Mater., 2011, 59(9): 3422
doi: 10.1016/j.actamat.2011.02.017
7 Liu Y D, Jiang Q W, Zhao X, et al. Texture analysis and simulation of pearltic wires during drawing [J]. Acta Metall. Sin., 2002, 38(11): 1215
7 刘沿东, 蒋奇武, 赵 骧 等. 拉拔过程中珠光体钢丝帘线的织构分析与模拟 [J]. 金属学报, 2002, 38(11): 1215
8 Zhang X D, Godfrey A, Liu W, et al. Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing [J]. Acta Metall. Sin., 2010, 46(2): 141
8 张晓丹, Godfrey A, 刘 伟 等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变 [J]. 金属学报, 2010, 46(2):141
doi: 10.3724/SP.J.1037.2009.00247
9 Zhao T Z. Strain path effects on the pearlitic steel wire during cold drawing [D]. Beijing: University of Chinese Academy of Sciences, 2014
9 赵天章. 珠光体钢丝冷拉拔过程中应变路径效应的研究 [D]. 北京: 中国科学院大学, 2014
10 Celentano D J, Palacios M A, Rojas E L, et al. Simulation and experimental validation of multiple-step wire drawing processes [J]. Finite Elem. Anal. Des., 2009, 45(3): 163
doi: 10.1016/j.finel.2008.09.001
11 Toribio J, Lorenzo M, Vergara D. On the use of varying die angle for improving the resistance to hydrogen embrittlement of cold drawn prestressing steel wires [J]. Eng. Fail. Anal., 2015, 47: 273
doi: 10.1016/j.engfailanal.2014.09.007
12 Hwang J K, Yi I C, Son I H, et al. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing [J]. Mat. Sci. Eng., 2015, 644A: 41
13 Yang Z J, Wang K K, Yang Y. Optimization of steel wire drawing process based on deform and response surface methodology [J]. J. Nets. Form. Eng., 2019, 11(2): 9
13 杨祖建, 王开坤, 杨 艳. 基于Deform和响应曲面法的钢丝拉拔工艺优化 [J]. 精密成形工程, 2019, 11(2): 9
14 Zhao T Z, Zhang S H, Zhang L Y, et al. Numerical simulation on influence of residual stress on strength gradient in cold drawn steel wire [J]. J. Plast. Eng., 2016, 23(5): 96
14 赵天章, 张士宏, 张凌云 等. 残余应力影响冷拉拔钢丝强度梯度的数值仿真[J]. 塑性工程学报, 2016, 23(5): 96
15 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Mater., 2010, 58(4): 1152
doi: 10.1016/j.actamat.2009.10.058
16 Jia C N. Mesoscopic modeling and simulation of microstructural evolution in Fe-C-Mn steels [D]. Hefei: University of Science and Technology of China, 2022
16 贾春妮. Fe-C-Mn合金微观组织行为的介观尺度建模与模拟 [D]. 合肥: 中国科学技术大学, 2022
17 Lu L, Wang Z X, Wang F Z, et al. Progress of microstructure evolution simulation in metal rolling process with plastic finite element method [J]. Mater. Rep., 2013, 27A(2) : 138
17 陆 璐, 王照旭, 王辅忠 等. 塑性有限元法在金属轧制过程中组织演化模拟进展 [J]. 材料导报, 2013, 27A(2) : 138
18 Ling B C. Simulation analysis on damage process and torsional performance improvement of ultra-high strength steel wire drawing process [D]. Nanjing: Southeast University, 2017
18 凌必超. 超高强度钢丝拉拔损伤过程模拟分析及扭转性能提升 [D]. 南京: 东南大学, 2017
19 Wang Q, Chen C, Li Z X, et al. Modeling of wire with flaw in multi-drawing and optimization of drawing technique [J]. Mech. Eng., 2009, 31(1): 28
19 王 珺, 陈 翠, 李兆霞 等. 含缺陷钢丝多道次拉拔模拟及工艺参数优化 [J]. 力学与实践, 2009, 31(1): 28
20 Zhang L, Zhang G Z, Liu H F. Study on microstructure and properties of medium carbon steel wire drawing process [J]. Met. Prod., 2020, 46(1): 14
20 张 伦, 张国珍, 刘红芳. 中碳钢丝拉拔过程组织与性能研究 [J]. 金属制品, 2020, 46(1): 14
21 Jiang K C. Wire Drawing Technique [M]. Beijing: Light Industry Press, 1982
21 蒋克昌. 钢丝拉拔技术 [M]. 北京: 轻工业出版社, 1982
22 Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
23 Zhang X D, Godfrey A, Hansen N, et al. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing [J]. Mater. Charact., 2010, 61(1): 65
doi: 10.1016/j.matchar.2009.10.007
24 Franciosi P, Le L T, Monnet G, et al. Investigation of slip system activity in iron at room temperature by SEM and AFM in-situ tensile and compression tests of iron single crystals [J]. Int. J. Plast., 2015, 65: 226
doi: 10.1016/j.ijplas.2014.09.008
25 Kumar P, Gurao N P, Haldar A, et al. Progressive changes in the microstructure and texture in pearlitic steel during wire drawing [J]. ISIJ Int., 2011, 51(4): 679
doi: 10.2355/isijinternational.51.679
26 Watanabe R. Possible slip systems in body centered cubic iron [J]. Mater. Trans., 2006, 47(8): 1886
doi: 10.2320/matertrans.47.1886
27 Min K M, Jeong W, Hong S H, et al. Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels [J]. Int. J. Plast., 2020, 127: 102644
doi: 10.1016/j.ijplas.2019.102644
28 Pokharel R, Patra A, Brown D W, et al. An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations [J]. Int. J. Plast., 2019, 121: 201
doi: 10.1016/j.ijplas.2019.06.005
29 Sun F W, Meade E D, O'dowd N P. Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method [J]. Int. J. Plast., 2019, 119: 215
doi: 10.1016/j.ijplas.2019.03.009
30 Huang X T, Wang J J, Zhao S X, et al. High-resolution multiscale modeling of mechanical behavior of cold-drawn pearlitic steels [J]. J. Mater. Res. Technol., 2021, 15: 5920
doi: 10.1016/j.jmrt.2021.10.087
31 Zhao J W, Jiang Z Y, Wang Z H, et al. An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method [J]. J. Mater. Res. Technol., 2022, 20: 2247
doi: 10.1016/j.jmrt.2022.07.105
32 Zheng Z B, Zhao P D, Zhan M, et al. The roles of rise and fall time in load shedding and strain partitioning under the dwell fatigue of titanium alloys with different microstructures [J]. Int. J. Plast., 2022, 149: 103161
doi: 10.1016/j.ijplas.2021.103161
33 Zhang W T, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation [J]. Int. J. Fatigue, 2022, 159: 106818
doi: 10.1016/j.ijfatigue.2022.106818
34 Schmitt J H, Shen E L, Raphanel J L. A parameter for measuring the magnitude of a change of strain path: validation and comparison with experiments on low carbon steel [J]. Int. J. Plast., 1994, 10(5): 535
doi: 10.1016/0749-6419(94)90013-2
35 Su H Y. The effect of annealing process on the microstructures and properties of 2000 MPa cold-drawn steel wire [J]. Iron Steel Van. Tit., 2022, 43(2): 172
35 苏红艳. 退火工艺对2000 MPa级冷拉钢丝组织和性能的影响 [J]. 钢铁钒钛, 2022, 43(2): 172
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[11] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] 王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[14] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[15] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.