Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 314-320    DOI: 10.11901/1005.3093.2021.115
  研究论文 本期目录 | 过刊浏览 |
基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究
殷洁(), 胡云涛, 刘慧, 杨逸霏, 王艺峰
武汉理工大学材料科学与工程学院 武汉 430070
Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties
YIN Jie(), HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
引用本文:

殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
Jie YIN, Yuntao HU, Hui LIU, Yifei YANG, Yifeng WANG. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. Chinese Journal of Materials Research, 2022, 36(4): 314-320.

全文: PDF(2768 KB)   HTML
摘要: 

基于电沉积技术的方法在电极表面构建聚苯胺(PANI)/海藻酸膜,直接构建PANI/海藻酸修饰电极,结合了海藻酸的阳极电沉积和苯胺的电化学聚合,具有条件温和以及后处理简便的特点。PANI/海藻酸膜呈现出与PANI类似的深绿色,其不仅可以稳定的存在于电极表面,而且还可以从电极表面取下来作为独立的膜材料。X射线衍射、红外光谱以及扫描电镜的测试结果均表明利用电沉积技术在电极表面制备得到了PANI/海藻酸膜。电化学性能分析结果表明,与PANI修饰电极相比,PANI/海藻酸修饰电极的电荷转移电阻更小,具备更高的电化学电容、更好的电荷储存能力和循环稳定性。

关键词 有机高分子材料聚苯胺/海藻酸膜电沉积技术电化学性能    
Abstract

A PANI/alginate modified glass electrode was prepared via a two-step electrodeposition approach. This approach combines the anodic electrodeposition of alginate with the electrochemical polymerization of aniline, which has many advantages such as convenient operation and simple post-treatment. The prepared PANI/alginate film presents dark green coloration similar to that of PANI. The PANI/alginate film is not only stable on the surface of the electrode, but also it can be detached completely from the electrode to be used as an independent film. The results from FTIR, XRD and SEM suggest that PANI and alginate do exist in the prepared film. The results of electrochemical performance analysis show that in comparison with the simple PANI modified electrode, the PANI/alginate modified electrode has higher electrochemical capacitance, better electrochemical stability, lower charge transfer resistance, better charge storage capacity and cycle stability. Thus, the PANI/alginate film modified electrode prepared by electrodeposition approach has promising application prospect as electrode material for capacitors.

Key wordspolymer materials    polyaniline/alginate film    electrodeposition    electrochemical properties
收稿日期: 2021-01-25     
ZTFLH:  O636  
基金资助:武汉理工大学自主创新研究基金(206601005);国家级大学生创新创业训练计划(202010497011)
作者简介: 殷洁,女,1996年生,硕士生
图1  电沉积技术构建PANI/海藻酸膜
图2  海藻酸膜、PANI、PANI/海藻酸膜的XRD图(a)和FITR图(b)
图3  海藻酸膜和PANI/海藻酸膜的SEM图
图4  裸电极、海藻酸修饰电极、PANI修饰电极和PANI/海藻酸修饰电极的循环伏安曲线(a)和PANI修饰电极、PANI/海藻酸修饰电极的交流阻抗谱(b)
图5  在不同扫描速率下的PANI/海藻酸修饰电极循环伏安曲线
图6  裸电极、海藻酸修饰电极、PANI修饰电极和PANI/海藻酸修饰电极的恒流充放电曲线和PANI/海藻酸修饰电极在不同电流密度下的恒流充放电曲线
图7  PANI修饰电极和PANI/海藻酸修饰电极的循环稳定性
1 Liu Y, Kim E, Ghodssi R, et al. Biofabrication to build the biology-device interface [J]. Biofabrication, 2010, 2: 022002
2 Wu S P, Dai X Z, Cheng T T, et al. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr (VI) [J]. Carbohydr. Polym., 2018, 195: 199
doi: 10.1016/j.carbpol.2018.04.077
3 Lee K Y, Mooney D J. Alginate: Properties and biomedical applications [J]. Prog. Polym. Sci., 2012, 37: 106
doi: 10.1016/j.progpolymsci.2011.06.003
4 Li H, Pan J, Cao K Y, et al. Preparation of nano zinc oxide/sodium alginate composite film by electrodenosition [J]. Chin. J. Mater. Res., 2020, 34: 829
4 李 辉, 潘 捷, 曹凯元 等. 用电沉积法制备纳米氧化锌/海藻酸钠复合膜 [J]. 材料研究学报, 2020, 34: 829
5 Liu Z Y, Takeuchi M, Nakajima M, et al. Shape-controlled high cell-density microcapsules by electrodeposition [J]. Acta Biomater., 2016, 37: 93
doi: 10.1016/j.actbio.2016.03.045
6 Pawar S N, Edgar K J. Alginate derivatization: a review of chemistry, properties and applications [J]. Biomaterials, 2012, 33: 3279
doi: 10.1016/j.biomaterials.2012.01.007
7 Shi X W, Tsao C Y, Yang X H, et al. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels [J]. Adv. Funct. Mater., 2009, 19: 2074
doi: 10.1002/adfm.200900026
8 Márquez-Maqueda A, Ríos-Gallardo J M, Vigués N, et al. Enzymatic biosensors based on electrodeposited alginate hydrogels [J]. Procedia. Eng., 2016, 168: 622
doi: 10.1016/j.proeng.2016.11.229
9 Tian J, Peng D F, Wu X, et al. Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage [J]. Carbohydr. Polym., 2017, 156: 19
doi: 10.1016/j.carbpol.2016.09.005
10 Liu S L, Yu T F, Wu Y H, et al. Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors [J]. RSC Adv., 2014, 4: 34134
doi: 10.1039/C4RA07017H
11 Baker C O, Huang X W, Nelson W, et al. Polyaniline nanofibers: Broadening applications for conducting polymers [J]. Chem. Soc. Rev., 2017, 46: 1510
doi: 10.1039/C6CS00555A
12 Shi T L, Tang G X, Zhao C X, et al. Preparation and electrochemical performance of composites of polyaniline coated carbon micro-coils [J]. Chin. J. Mater. Res., 2018, 32: 58
12 史泰龙, 唐国霞, 赵晨曦 等. 聚苯胺包覆酸处理螺旋碳纤维材料的制备和电化学性能 [J]. 材料研究学报, 2018, 32: 58
doi: 10.11901/1005.3093.2017.121
13 Liu C X, Yu Y G, Chang Y Z, et al. Studies on preparation and electrochemical properties of electrochromic conductive polyaniline solid supercapacitor [J]. Acta Polym. Sin., 2016, (3): 352
13 刘翠仙, 余雅国, 常云珍 等. 电致变色型导电聚苯胺固态超级电容器的构建与性能研究 [J]. 高分子学报, 2016, (3): 352
14 Bhadra S, Khastgir D, Singha N K, et al. Progress in preparation, processing and applications of polyaniline [J]. Prog. Polym. Sci., 2009, 34: 783
doi: 10.1016/j.progpolymsci.2009.04.003
15 Li W, Jang D M, An S Y, et al. Polyaniline-chitosan nanocomposite: High performance hydrogen sensor from new principle [J]. Sens. Actuat., 2011, 160B: 1020
16 Zheng J, Yu X, Wang C, et al. Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery [J]. J. Mater. Sci., 2016, 27: 4457
17 Li Y Z, Zhao X, Xu Q, et al. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors [J]. Langmuir, 2011, 27: 6458
doi: 10.1021/la2003063
18 Huang H B, Zeng X P, Li W, et al. Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate [J]. J. Mater. Chem., 2014, 2A: 16516
19 Rethi M, Ponrathnam S, Rajan C R. Facile synthesis of processable conductive water solubilized Polyaniline [J]. Macromol. Rapid Commun., 1998, 19: 119
doi: 10.1002/(SICI)1521-3927(19980201)19:2<119::AID-MARC119>3.0.CO;2-#
20 Xu H, Yan W, Feng J T. Development of synthesis and polymerization mechanism of polyaniline [J]. Chem. Ind. Eng. Progr., 2008, 27: 1561
20 徐 浩, 延 卫, 冯江涛. 聚苯胺的合成与聚合机理研究进展 [J]. 化工进展, 2008, 27: 1561
21 Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors [J]. Anal. Chim. Acta, 2003, 475: 1
doi: 10.1016/S0003-2670(02)01229-1
22 Syed A A, Dinesan M K. Review: Polyaniline-a novel polymeric material [J]. Talanta, 1991, 38: 815
pmid: 18965226
23 Karthik R, Meenakshi S. Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers [J]. Int. J. Biol. Macromol., 2015, 72: 711
doi: 10.1016/j.ijbiomac.2014.09.023
24 Yu Y J, Si Z H, Chen S J, et al. Facile synthesis of polyaniline-sodium alginate nanofibers [J]. Langmuir, 2006, 22: 3899
doi: 10.1021/la051911v
25 Sartori C, Finch D S, Ralph B, et al. Determination of the cation content of alginate thin films by FTi.r. spectroscopy [J]. Polymer, 1997, 38: 43
doi: 10.1016/S0032-3861(96)00458-2
26 Huang K, Wan M X. Self-assembled polyaniline nanostructures with photoisomerization function [J]. Chem. Mater., 2002, 14: 3486
doi: 10.1021/cm020206u
27 Liu X L, Liu H, Qu X, et al. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment [J]. J. Mater. Sci., 2017, 28: 146
28 Ismail Y A, Shin S R, Shin K M, et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization [J]. Sens. Actuat., 2008, 129B: 834
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[5] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.