Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 315-320    DOI: 10.11901/1005.3093.2021.427
  研究论文 本期目录 | 过刊浏览 |
支链含氟聚酯的合成和性能
李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸()
北京理工大学化学与化工学院 北京 100081
Synthesis of Branched Fluorine-containing Polyesters and their Properties
LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun()
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
引用本文:

李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
Hanlou LI, Xiaoguang JIAO, Huanhuan ZHU, Xiaohuan ZHAO, Qingze JIAO, Caihong FENG, Yun ZHAO. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. Chinese Journal of Materials Research, 2023, 37(4): 315-320.

全文: PDF(1371 KB)   HTML
摘要: 

用1H,1H,2H,2H-全氟-1-癸醇对1,2,4-苯三酸酐中的一个官能团进行封端后替代部分顺丁烯二酸酐,与新戊二醇共缩聚合成了支链含氟聚酯,然后在含氟聚酯中加入交联剂进行固化反应制备出支链含氟聚酯膜。使用红外光谱、XRD、GPC、TG和DSC等手段表征含氟聚酯的结构、分子量和热稳定性,用万能试验机、接触角测试仪和X射线电子能谱分析了含氟聚酯膜的力学性能、表面性能及表面元素含量。结果表明,在聚酯中成功引入含氟基团使含氟聚酯比无氟聚酯的分子量增大,热稳定性先提高后降低,初始分解温度最高达299.41℃,玻璃化转变温度由6.24℃提高到46.65℃;随着含氟基团含量的提高聚酯膜的断裂伸长率降低而拉伸强度提高,拉伸强度最高达到19.97 MPa;含氟基团由含氟聚酯膜的本体向表面迁移,随着含氟基团含量的提高聚酯膜的水接触角和油接触角逐渐增大,使聚酯膜具有疏水性。

关键词 有机高分子材料含氟聚酯疏水水接触角    
Abstract

The polyester containing fluorine in its branch chains was synthesized. First of all, one of the functional groups of 1, 2, 4-phthalic anhydride was capped using 1H, 1H, 2H, 2H-perfluoro-1-decanol, then a part of the pentabutyl diacinate was replaced by terminated 1, 2, 4-phthalic anhydride to obtain fluorinated polyester with neopentyl glycol via copolycondensation reaction. After that, films of the fluorinated polyester were prepared by curing with the crosslinker. The structure, molecular weight and thermal stability of fluorinated polyester were characterized by means of IR, XRD, GPC, TG and DSC. The mechanical properties, surface properties and surface element content of fluorinated polyester films were assessed by using universal testing machine, contact angle tester and X-ray electron spectroscopy. The results show that with the increase of the functional groups, the molecular mass of fluorinated polyester increased compared with the non-fluorinated polyester, while the thermal stability of fluorinated polyester increased firstly and then decreased; The maximum initial decomposition temperature is as high as 299.41℃;The glass transition temperature was gradually increased from 6.24℃ to 46.65℃; the elongation at break of fluorinated polyester film decreased while the tensile strength increased gradually, and the maximum tensile strength reached 19.97 MPa. The fluorinated groups migrated from the main body to the surface of the fluorinated polyester film. Furthermore, the water contact angles and the oil contact angles of films increased with the increase of fluorinated groups while the films gained hydrophobicity.

Key wordsorganic polymer materials    fluorinated polyester    hydrophobic    water contact angle
收稿日期: 2021-07-28     
ZTFLH:  O633.14  
基金资助:珠海市产业核心和关键技术攻关方向项目(ZH22044702190115HJL)
作者简介: 李瀚楼,男,1998年生,硕士生
焦晓光,男,1995年生,博士
图1  含氟聚酯的红外光谱
Mn / g·mol-1Mw/ g·mol-1PDI
FP-071914301.99
FP-30100832153.19
FP-5095024672.60
FP-70140534152.43
表1  含氟聚酯的分子量
图2  含氟聚酯的TG曲线
p / %,mole fractionTd / ℃
FP-00272.80
FP-3030299.41
FP-5050274.59
FP-7070263.11
表2  含氟聚酯的初始分解温度
图3  含氟聚酯的DSC曲线
p / %, mole fractionTg / ℃
FP-006.24
FP-30306.88
FP-505023.61
FP-707046.65
表3  含氟聚酯的玻璃化转变温度
p / %,mole fractionσ / MPaδ / %
FP-0-pf05.0075.48
FP-30-pf3014.1942.60
FP-50-pf5015.6839.07
FP-70-pf7019.975.96
表4  含氟聚酯膜的力学性能
图4  含氟聚酯膜的断裂伸长率与拉伸强度
p / %,mole fractionWCA / (°)OCA / (°)
FP-0-pf065.851.3
FP-30-pf3087.060.2
FP-50-pf50105.977.7
FP-70-pf70107.477.7
表5  含氟聚酯膜的水/油接触角
图5  FP-70-pf的XPS全谱
CFON
Before59.3116.6218.305.77
After88.843.124.313.72
表6  氩离子蚀刻前后FP-70-pf表面元素的含量(质量分数,%)
1 Wei Y H, Liu X J, Xie C P, et al. Structure and properties of several differentiated polyester fibers[J]. Journal of Textile Research, 2019, 40(11): 13
1 魏艳红, 刘新金, 谢春萍 等. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13
2 Sun X F, Chen S C, Yang Z C, et al. Synthesis and characterization of copolyester[J]. Synthetic Fiber in China, 2019, 48(01): 1
2 孙小甫, 陈世昌, 杨志超 等. 共聚酯的合成与性能表征[J]. 合成纤维, 2019, 48(01): 1
3 Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review[J]. Biofouling, 2006, 22(5): 339
doi: 10.1080/08927010600980223
4 Temtchenko T, Marchetti R, Locaspi A. Self-cleaning perfluoropolyether based coatings[J]. Surf. Coat. Int. Pt. B-C., 1998, 81(9): 448
5 Jung Y C, Bhushan B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity / philicity and oleophobicity / philicity[J]. Langmuir, 2009, 25(24): 14165
doi: 10.1021/la901906h
6 Hare E F, Shafrin E G, Zisman W A. Properties of films of adsorbed fluorinated acids[J]. J. Phys. Chem., 1954, 58(3): 236
doi: 10.1021/j150513a011
7 Johnson L K, Sade W T. New monomers for polyester power coating resins[J]. Paint & Coatings Industry, 1996, 65(826):19
8 Cengiz U, Erbil H Y, Sarac A. S. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning[J]. Applied Surface Science, 2012, 258(15): 5815
doi: 10.1016/j.apsusc.2012.02.107
9 Meng K, Zhai L P, Hu Z L. Advance in synthesis and applications of fluorinated polyesters[J]. Synthetic Technology & Application, 2015, 30(04):34
9 孟 楷, 翟丽鹏, 胡兆麟. 含氟改性聚酯的合成及应用前景[J]. 合成技术及应用, 2015, 30(04):34.
10 Messori M, Toselli M, Pilati F, et al. Poly (ε-caprolactone)-poly (fluoroalkylene oxide)-poly (ε-caprolactone) block copolymers as surface modifiers of poly(vinyl chloride)[J]. Surf. Coat. Int. Pt. B-C., 2002, 85(3): 197
11 Toselli M, Pilati F, Fusari M, et al. Fluorinated poly (butylene terephthalate): preparation and properties[J]. J. Appl. Polym. Sci., 1994, 54(13): 2101
doi: 10.1002/app.1994.070541312
12 Ramaratnam K, Swaminatha K, Kinnan M K, et al. Ultrahydrophobic textiles using nanoparticles: lotus approach[J]. J. Eng. Fiber. Fabr., 2008, 3(4): 1
13 Wang Z, Macosko C W, Bates F S. Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester[J]. ACS Appl. Mater. Interfaces, 2015, 8(1): 754
doi: 10.1021/acsami.5b09976
14 Yim J, Rodriguez S V, Williams A, et al. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors[J]. Surf. Coat. Technol., 2013, 234: 21
doi: 10.1016/j.surfcoat.2013.03.028
15 Wu X, Wyman I, Zhang G, et al. Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies[J]. Prog. Org. Coat., 2016, 90: 463
16 Zhong S J, Li J W, Li Y G, et al. Preparation and properties of surfactant-free cross-linked waterborne silicone-modified alkyd resin coating[J]. Polym. Mater. Sci. Eng., 2019, 35(02): 141
16 钟申洁, 李家炜, 李岩阁 等. 无皂交联水性有机硅改性聚酯涂层的制备及性能[J]. 高分子材料科学与工程, 2019, 35(02): 141
17 Wang B. Preparation and application of low surface energy of fluorosilicone modified polyester coatings[D]. Hangzhou: Zhejiang University, 2016
17 王 兵. 氟硅改性聚酯低表面能涂层的制备与应用性能[D]. 杭州: 浙江大学, 2016
18 Wang Z, Macosko C W, Bates F S. Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester[J]. ACS Applied Materials & Interfaces, 2015, 8(1): 754-761
19 Demir T, Wei L, Nitta N, et al. Toward a long-chain perfluoroalkyl replacement: Water and oil repellency of polyethylene terephthalate (PET) films modified with perfluoropolyether-based polyesters[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24318
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[3] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 王扬, 张磊, 王磊, 张妍, 汤庆国, 杜特, 焦万学, 冯雪彬. 海泡石超疏水复合涂层的制备和性能[J]. 材料研究学报, 2021, 35(12): 942-950.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.