Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 667-674    DOI: 10.11901/1005.3093.2020.427
  研究论文 本期目录 | 过刊浏览 |
吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能
余谟鑫1,2(), 蒯乐1, 王亮1, 张晨1, 王晓婷1,3, 陈启厚1
1.安徽工业大学化学与化工学院 马鞍山 243000
2.中钢天源有限公司 马鞍山 243000
3.马钢集团股份有限公司 马鞍山 243000
Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74
YU Moxin1,2(), KUAI Le1, WANG Liang1, ZHANG Chen1, WANG Xiaoting1,3, CHEN Qihou1
1.School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 234000, China
2.Sinosteel New Materials Co. Ltd. , Ma'anshan 234000, China
3.Magang (Group) Holding Co. Ltd. , Ma'anshan 234000, China
引用本文:

余谟鑫, 蒯乐, 王亮, 张晨, 王晓婷, 陈启厚. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能[J]. 材料研究学报, 2021, 35(9): 667-674.
Moxin YU, Le KUAI, Liang WANG, Chen ZHANG, Xiaoting WANG, Qihou CHEN. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. Chinese Journal of Materials Research, 2021, 35(9): 667-674.

全文: PDF(2868 KB)   HTML
摘要: 

以吲哚为碳源、氧化钙为模板耦合KOH活化并调节活化终温,制备出表面掺氮的层状分级多孔炭(HPCT),研究了其对酸性橙74的吸附性能。结果表明:随着活化温度的提高这种多孔炭的比表面积增大,活化终温为900℃时制得的HPC900比表面积高达1629 m2/g。这种炭材料具有相互连接的层状结构,且随着活化温度的提高炭壁层变薄。这种炭材料的表面有丰富的含氮官能团C-NH2,随着活化温度的提高C-NH2的含量随之提高。C-NH2官能团与酸性橙74发生π-π堆积效应或静电相互作用,有利于提高其吸附性能。Freundlich模型能很好地描述HPCT对染料的吸附过程,在50 mg/L的平衡浓度下HPC900对废水中酸性橙74的吸附量超过270 mg/g;拟一级动力学方程能更好的描述HPCT对酸性橙74的吸附过程,物理吸附为控速步骤。

关键词 无机非金属材料吲哚掺氮多孔炭酸性橙74吸附    
Abstract

N-doped hierarchical porous carbon (HPCT) was synthesized by adjusting the final activation temperature, with indole as carbon and nitrogen source, CaO as template coupled with KOH activation, and then the adsorption performance of acid orange 74 on HPCT was investigated. BET results show that the surface area of HPCT increases with the increase of activation temperature. The specific surface area of the as-made HPC900 is up to 1629 m2/g when the final activation temperature was 900℃. The FESEM and TEM results demonstrate that the HPCT has the interconnected layer structure. With the rising activation temperature the wall width of HPCT becomes thinner. XPS results show that nitrogen functional groups existed on the HPCT surface, the content of C-NH2 increases gradually as temperature rose. The above functional group is conducive to the π-π stacking effect and electrostatic interaction with absorbate acid orange 74, which is beneficial to the adsorption process. The adsorption isotherm results indicate that the adsorption process could be described by Freundlich model, the equilibrium adsorption capacity of which was more than 270 mg/g by the equilibrium concentration of 50 mg/L. The kinetic results show that the pseudo first-order kinetic equation can better describe the adsorption process, while the physical adsorption is the rate-control step.

Key wordsinorganic non-metallic materials    indole    N-doped porous carbon    acid orange 74    adsorption
收稿日期: 2020-10-15     
ZTFLH:  O647.3  
基金资助:国家自然科学基金(51602004);中国博士后基金(2019M652173)
作者简介: 余谟鑫,男,1978年生,博士
图1  吸附剂酸性橙74的化学结构式
图2  HPC900的扫描电镜照片、HPC800、HPC850和HPC900的透射电镜照片
图3  HPCT的氮气吸脱附曲线和孔径分布图
SampleDap/nmSBET/m2·g-1Smic/m2·g-1Vt/cm3·g-1Vmic/cm3·g-1Non-Vmic/Vt
HPC8002.6014589140.950.470.51
HPC8502.7015207731.020.400.61
HPC9003.1216294951.270.260.79
表1  HPCT样品的比表面积及孔结构参数
图4  HPCT的XPS全谱图、HPC900的O 1s图和HPC900的N 1s图
SamplesC 1sN1sC-N=CN-(C)3C-NH2O 1sC=OC-OH
HPC80082.595.892.392.820.6811.522.392.82
HPC85085.435.062.272.050.749.512.272.05
HPC90087.094.661.671.711.288.251.671.71
表2  制备分级多孔炭中元素及官能团含量
图5  HPCT吸附酸性橙74的吸附等温线、Langmuir拟合和Freundich拟合
SamplesLangmuirFreundich
qmax/mg·g-1KLR2nKFR2
HPC80011360.0070.991.8535.490.99
HPC85014850.0050.991.5121.190.99
HPC90019660.0030.981.3615.840.99
表3  HPCT的等温线拟合参数
图6  HPCT吸附酸性橙74的吸附量随时间变化曲线与吸附动力学拟合曲线
SamplesPseudo-first orderPseudo-second order
qe/mg·g-1K1R2qeK2R2
HPC8002310.110.992933.63×10-40.95
HPC8502630.070.993082.62×10-40.92
HPC9003870.130.996998.29×10-50.99
表4  HPCT的动力学拟合参数
Adsorbentqe/mg·g-1Ref.Adsorbentqe/mg·g-1Ref.
Carbon nanotubes43.21[29]Canola stalks25.06[32]
TiO2 nanoparticles37.03[30]PR leaves7.52[33]
Clinoptilolite44.05[31]HPC900387.53This study
表5  不同吸附剂对酸性橙74染料的吸附
图7  HPCT对酸性橙74的吸附机理
1 Allman A, Daoutidis D, Arnold W A, et al. Efficient water pollution abatement [J]. Ind. Eng. Chem. Res., 2019, 58: 22483
2 Samanta P, Desai A V, Let S, et al. Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation [J]. ACS Sustainable Chem. Eng., 2019, 7: 7456
3 Routoula E, Patwardhan S V. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential [J]. Environ. Sci. Technol., 2020, 54: 647
4 Jin L N, Zhao X S, Qian X Y, et al. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes [J]. J. Colloid Interf. Sci., 2018, 509: 2453
5 Santoso E, Ediati R, Kusumawati Y, et al. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water [J]. Mater. Today Chem., 2020, 16: 100233
6 Youcef L D, Belaroui L L, López-Galindo A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite [J]. Appl. Clay Sci., 2019, 179: 105145
7 Yang S X, Wang L Y, Zhang X D, et al. Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor [J]. Chem. Eng. J., 2015, 275: 315
8 Savarese M, De Marco E, Falco S, et al. Biophenol extracts from olive oil mill wastewaters by membrane separation and adsorption resin [J]. Int. J. Food. Sci. Technol., 2016, 51: 2386
9 Do Carmo J, Justino N M, Se Matias M, et al. Membrane adsorption with polyacrylonitrile prepared with superfine powder-activated carbon, case study: separation process applied in water treatment containing diclofenac [J]. Environ. Technol., 2020, doi: 10.1080/09593330.2020.1793006
10 Lei W J, Ma Y X, La P Q, et al. Preparation and property of Fe3O4/P(St-co-MMA) micro-nano composites [J]. Chin. Mater. Res., 2016, 30: 711
10 雷文娟, 马应霞, 喇培清等. 磁性Fe3O4/P(St-co-MMA)微纳米复合物的制备和性能 [J]. 材料研究学报, 2016, 30: 711
11 Zang G, Li J J, Ji X S, et al. Study on oil separation from oil/water emulsion via coagulation and ultrafiltration [J]. J. Chem. Eng. Chin. Univ., 2017, 31: 449
11 张谨, 李俊俊, 纪晓声等. 利用混凝-超滤膜法研究乳化油水的分离过程 [J]. 高校化学工程学报, 2017, 31: 449
12 Liu Z, Demeestere K, Van Hulle S. Enhanced Ozonation of trace organic contaminants in municipal wastewater plant effluent by adding a preceding filtration step: comparison and prediction of removal efficiency [J]. ACS Sustainable Chem. Eng., 2019, 7: 14661
13 Han Z W, Kong S L, Cheng J, et al. Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks [J]. Ind. Eng. Chem. Res., 2019, 58: 14785
14 Gupta K, Divya G, Khatri O P. Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes [J]. Appl. Surf. Sci., 2019, 476: 647
15 Mashkoor F, Nasar A, Inamuddin J. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review [J]. Environ. Chem. Lett., 2020, 18: 605
16 Chen W, Nie Y Y, Sun X G, et al. Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chin. J. Mater. Res., 2019, 33: 371
16 陈玮, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33: 371
17 Sun Y, Li D W, Wei Q F. Adsorption properties of metal-organic framework material MIL-53(Al)-F127 for Bisphenol A. Chin. J. Mater. Res., 2020, 34: 353
17 孙玥, 李大伟, 魏取福. 金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能 [J]. 材料研究学报, 2020, 34: 353
18 Oukil S, Bali F, Halliche D. Adsorption and kinetic studies of methylene blue on modified HUSY zeolite and an amorphous mixture of γ-alumina and silica [J]. Sep. Sci. Technol,. 2020, 55: 2642
19 Duc P T, Kobayashi M, Adachi Y, et al. Adsorption characteristics of anionic azo dye onto large α-alumina beads [J]. Colloid Polym. Sci., 2015, 293: 1877
20 Herrera-González A M Caldera-Villalobos M, Peláez-Cid A A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite [J]. J. Environ. Manag., 2019, 234: 237
21 Hou S L, Lu H G, Gu Y F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31: 495
21 侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(AL)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31: 495
22 Cai Z H, Deng X C, Wang Q, et al. Core-shell granular activated carbon and its adsorption of trypan blue [J]. J. Clean. Prod., 2020, 242: 118
23 Kong Q M, Wang X J, Lou T. Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties [J]. Carbohydr. Polym., 2020, 244: 116481
24 She X J, Wu J J, Zhong J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency [J]. Nano Energy, 2016, 27: 138
25 Zhou N, Qiu P X, Chen H, et al. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects [J]. J. Taiwan Inst. Chem. Eng., 2018, 83: 99
26 Wang H, Liang S, Lv Q Y, et al. Production of hierarchically porous carbon from natural biomass waste for efficient organic contaminants adsorption [J]. J. Clean. Prod., 2020, 26: 121352
27 Benkhaya S, M'rabet S, Hsissou R, et al. Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal [J]. J. Mater. Res. Technol., 2020, 9: 4763
28 Yu J H, Joo S Y, Sim T Y, et al. Post-KOH activation of nitrogen-containing porous carbon with ordering mesostructure synthesized through a self-assembly [J]. Chem. Phys. Lett., 2020, 739: 137028
29 Lan R J, Su W B, Zhang J X. Decolourization of acid orange 74 aqueous solutions in presence of multi-walled carbon nanotubes under ultrasound irradiation [J]. J. Water. Chem. Technol., 2020, 42: 235
30 Topal G, Cakmak N K, Eroğlu A, et al. Removal of acid orange 74 from wastewater with TiO2 nanoparticle [J]. Int. J. Res. Ent. J., 2019, 3: 75
31 Karadag D. Modeling the mechanism, equilibrium and kinetics for the adsorption of acid orange 8 onto surfactant-modified clinoptilolite: the application of nonlinear regression analysis [J]. Dyes Pigm., 2007, 74: 659
32 Hamzeh Y, Ashori A, Azadeh E, et al. Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent [J]. Mater. Sci. Eng., 2012, 32C: 1394
33 Rehman R, Jan Muhammad S, Arshad M. Brilliant green and acid orange 74 dyes removal from water by Pinus roxburghii leaves in naturally benign way: an application of green chemistry [J]. J. Chem., 2019, 2019: 3573704
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.