|
|
BNZ组分对KNN基无铅压电陶瓷结构和性能的影响 |
李博森, 廖忠新, 高大强( ) |
兰州大学物理科学与技术学院 兰州 730030 |
|
Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics |
LI Bosen, LIAO Zhongxin, GAO Daqiang( ) |
School of Physical Science and Technology, Lanzhou University, Lanzhou 730030, China |
引用本文:
李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
Bosen LI,
Zhongxin LIAO,
Daqiang GAO.
Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. Chinese Journal of Materials Research, 2024, 38(1): 51-60.
1 |
Xiao D Q.Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics [J]. J. Adv. Dielectr., 2011, 1(1): 33
doi: 10.1142/S2010135X11000045
|
2 |
Aksel E, Jones J L.Advances in lead-free piezoelectric materials for sensors and actuators [J]. Sensors, 2010, 10(3): 1935
doi: 10.3390/s100301935
pmid: 22294907
|
3 |
Rödel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application [J]. J. Eur. Ceram. Soc., 2015, 35(6): 1659
doi: 10.1016/j.jeurceramsoc.2014.12.013
|
4 |
Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical properties in (K x Na1- x )NbO3 ceramics [J]. J. Appl. Phys., 2008, 103(8): 084116
|
5 |
Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432(7013): 84
doi: 10.1038/nature03028
|
6 |
Li P, Zhai J W, Shen B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics [J]. Adv. Mater., 2018, 30: 1705171
doi: 10.1002/adma.v30.8
|
7 |
Gao Y, Zhang J L, Qing Y L, et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic [J]. J. Am. Ceram. Soc., 2011, 94(9): 2968
doi: 10.1111/jace.2011.94.issue-9
|
8 |
Guo Y P, Kakimoto K I, Ohsato H.Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics [J]. Appl. Phys. Lett., 2004, 85(18): 4121
doi: 10.1063/1.1813636
|
9 |
Zheng T, Wu H J, Yuan Y, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics [J]. Energy Environ. Sci., 2017, 10(2): 528
doi: 10.1039/C6EE03597C
|
10 |
Wang X P, Wu J G, Xiao D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics [J]. J. Am. Chem. Soc., 2014, 136(7): 2905
doi: 10.1021/ja500076h
pmid: 24499419
|
11 |
Zhang B Y, Wu J G, Cheng X J, et al. Lead-free piezoelectrics based on potassium-sodium niobate with giant d33 [J]. ACS Appl. Mater. Interfaces, 2013, 5(16): 7718
doi: 10.1021/am402548x
|
12 |
Zheng T, Wu J G, Xiao D Q, et al. Giant d33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics [J]. Scr. Mater., 2015, 94: 25
doi: 10.1016/j.scriptamat.2014.09.008
|
13 |
Zhou J S, Wang K, Yao F Z, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity [J]. J. Mater. Chem. C, 2015, 3(34): 8780
doi: 10.1039/C5TC01357G
|
14 |
Zuo R Z, Fu J.Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1467
doi: 10.1111/jace.2011.94.issue-5
|
15 |
Lv X, Wu J G, Yang S, et al. Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics [J]. ACS Appl. Mater. Interfaces, 2016, 8(29): 18943
doi: 10.1021/acsami.6b04288
|
16 |
Cheng X J, Wu J G, Wang X P, et al. Giant d33 in (K, Na)(Nb, Sb)O3-(Bi, Na, K, Li)ZrO3 based lead-free piezoelectrics with high Tc [J]. Appl. Phys. Lett., 2013, 103: 052906
|
17 |
Wu J G, Wang X P, Cheng X J, et al. New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature [J]. J. Appl. Phys., 2014, 115(11): 114104
doi: 10.1063/1.4868585
|
18 |
Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium-sodium niobate lead‐free ceramics [J]. Adv. Mater., 2016, 28(38): 8519
doi: 10.1002/adma.v28.38
|
19 |
Jiang L M, Xing J, Tan Z, et al. High piezoelectricity in (K, Na)(Nb, Sb)O3-(Bi, La, Na, Li)ZrO3 lead-free ceramics [J]. J. Mater. Sci., 2016, 51(10): 4963
doi: 10.1007/s10853-016-9801-2
|
20 |
Wu B, Wu H J, Wu J G, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence [J]. J. Am. Chem. Soc., 2016, 138(47): 15459
pmid: 27933925
|
21 |
Zheng T, Wu J G, Xiao D Q, et al. Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics [J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20332
doi: 10.1021/acsami.5b06033
|
22 |
Jiang L M, Li Y Y, Xing J, et al. Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics [J]. Ceram. Int., 2017, 43(2): 2100
doi: 10.1016/j.ceramint.2016.10.189
|
23 |
Tao H, Wu J G.Giant piezoelectric effect and high strain response in (1-x)(K0.45Na0.55)(Nb1- y Sb y )O3-xBi0.5Na0.5Zr1- z Hf z O3 lead-free ceramics [J]. J. Eur. Ceram. Soc., 2016, 36(7): 1605
doi: 10.1016/j.jeurceramsoc.2016.01.043
|
24 |
Xing J, Tan Z, Jiang L M, et al. Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5-Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics [J]. J. Appl. Phys., 2016, 119(3): 034101
|
25 |
Hollenstein E, Damjanovic D, Setter N.Temperature stability of the piezoelectric properties of Li-modified KNN ceramics [J]. J. Eur. Ceram. Soc., 2007, 27(13-15): 4093
doi: 10.1016/j.jeurceramsoc.2007.02.100
|
26 |
Wu J G, Xiao D Q, Zhu J G.Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries [J]. Chem. Rev., 2015, 115(7): 2559
doi: 10.1021/cr5006809
pmid: 25792114
|
27 |
Zhang S J, Xia R, Shrout T R, et al. Piezoelectric properties in per-ovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics [J]. J. Appl. Phys., 2006, 100(10): 104108
doi: 10.1063/1.2382348
|
28 |
Wu J G. Development and prospect of potassium sodium niobate-based lead-free piezoelectric ceramics [J]. J. Sichuan Norm. Univ. (Nat. Sci.), 2019, 42(2): 143
|
28 |
吴家刚.铌酸钾钠基无铅压电陶瓷的发展与展望 [J]. 四川师范大学学报(自然科学版), 2019, 42(2): 143
|
29 |
Pang X M, Qiu J H, Zhu K J, et al. (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering [J]. Ceram. Int., 2012, 38(3): 2521
doi: 10.1016/j.ceramint.2011.11.022
|
30 |
Wang C J, Huang C Y, Wu Y C.Two-step sintering of fine alumina-zirconia ceramics [J]. Ceram. Int., 2009, 35(4): 1467
doi: 10.1016/j.ceramint.2008.08.001
|
31 |
Zhang J L, Qin Y L, Gao Y.Improvement of physical properties for KNN-based ceramics by modified two-step sintering [J]. J. Am. Ceram. Soc., 2014, 97(3): 759
doi: 10.1111/jace.2014.97.issue-3
|
32 |
Zhao R J, Li Y L, Zheng Z S, et al. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics [J]. Mater. Chem. Phys., 2020, 245: 122806
doi: 10.1016/j.matchemphys.2020.122806
|
33 |
Qin Y L, Zhang J L, Yao W Z, et al. Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50-ZrO3 piezoceramics with high d33 coefficient [J]. ACS Appl. Mater. Interfaces, 2016, 8(11): 7257
doi: 10.1021/acsami.6b00377
|
34 |
Shi C Y, Ma J, Wu J, et al. (Bi0.5Na0.5)ZrO3 modified KNN-based ceramics: Enhanced electrical properties and temperature insensitivity [J]. Ceram. Int., 2020, 46(3): 2798
doi: 10.1016/j.ceramint.2019.09.271
|
35 |
Tan L M, Sun Q, Wang Y Y.Outstanding piezoelectric properties of Al-substituted potassium-sodium niobate-based lead-free piezoceramics [J]. J. Alloys Compd., 2020, 836: 155419
doi: 10.1016/j.jallcom.2020.155419
|
36 |
Lee M K, Yang S A, Park J J, et al. Proposal of a rhombohedral-tetragonal phase composition for maximizing piezoelectricity of (K, Na) NbO3 ceramics [J]. Sci. Rep., 2019, 9: 4195
doi: 10.1038/s41598-019-40943-6
|
37 |
Takahashi M.Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities [J]. Jpn. J. Appl. Phys., 1970, 9(10): 1236
doi: 10.1143/JJAP.9.1236
|
38 |
Li B Z, Blendell J E, Bowman K J.Temperature‐dependent poling behavior of lead‐free BZT-BCT piezoelectrics [J]. J. Am. Ceram. Soc., 2011, 94(10): 3192
doi: 10.1111/jace.2011.94.issue-10
|
39 |
Lv X, Wu J G, Zhu J G, et al. A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction [J]. J. Eur. Ceram. Soc., 2018, 38(1): 85
doi: 10.1016/j.jeurceramsoc.2017.08.016
|
40 |
Xing J, Chen H, Jiang L M, et al. High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting [J]. Nano Energy, 2021, 84: 105900
doi: 10.1016/j.nanoen.2021.105900
|
41 |
Lake C H, Toby B H.Recent developments targeting new and experienced users in EXPGUI, an open source Rietveld analysis interface [J]. Z. Kristallogr., 2011, 226(12): 892
doi: 10.1524/zkri.2011.1378
|
42 |
Orayech B, Faik A, López G A, et al. Mode-crystallography analysis of the crystal structures and the low- and high-temperature phase transitions in Na0.5K0.5NbO3 [J]. J. Appl. Cryst., 2015, 48: 318
doi: 10.1107/S1600576715000941
|
43 |
Tan L M. Phase boundary construction and electrical properties of lead-free piezoelectric ceramics based on potassium sodium niobate [D].Guiyang:Guizhou University,2021
|
43 |
谭柳茂.铌酸钾钠基无铅压电陶瓷的相界构建及其电学性能研究 [D]. 贵阳: 贵州大学, 2021
|
44 |
Wei X W, Tao H, Zhao C L, et al. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics [J]. Acta Phys. Sin., 2020, 69(21): 217705
doi: 10.7498/aps
|
44 |
魏晓薇, 陶 红, 赵纯林 等.高性能铌酸钾钠基无铅陶瓷的压电和电卡性能 [J]. 物理学报, 2020, 69(21): 217705
|
45 |
Lv X, Wu J G, Zhang X X.A new concept to enhance piezoelectricity and temperature stability in KNN ceramics [J]. Chem. Eng. J., 2020, 402: 126215
doi: 10.1016/j.cej.2020.126215
|
46 |
Yao F Z, Wang K, Jo W, et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics [J]. Adv. Funct. Mater., 2016, 26(8): 1217
doi: 10.1002/adfm.v26.8
|
47 |
Chen X M, Wang M Y, Tomoaki K, et al. Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics [J]. Acta Phys. Sin., 2021, 70(19): 197701
doi: 10.7498/aps
|
47 |
陈小明, 王明焱, 唐木智明 等.CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性 [J]. 物理学报, 2021, 70(19): 197701
|
48 |
Lee G M, Kim B H.Effects of thermal aging on temperature stability of Pb(Zr y Ti1- y )O3 + x(wt.%)Cr2O3 ceramics [J]. Mater. Chem. Phys., 2005, 91(1): 233
doi: 10.1016/j.matchemphys.2004.09.034
|
49 |
Liang C K, Wu L, Wu T S.Temperature stability of resonant frequency of ternary PZT ceramics at the MPB by variation of sintering and poling treatment [J]. Ferroelectrics, 1991, 120(1): 185
doi: 10.1080/00150199108008242
|
50 |
Yang J, Gao Z P, Liu Y, et al. Time dependence of domain structures in potassium sodium niobate-based piezoelectric ceramics [J]. RSC Adv., 2021, 11(33): 20057
doi: 10.1039/d1ra03304b
pmid: 35479898
|
51 |
Sun X X, Zhang J W, Lv X, et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature [J]. J. Mater. Chem. A, 2019, 7(28): 16803
doi: 10.1039/C9TA03799C
|
52 |
Alikin D, Turygin A, Kholkin A, et al. Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics [J]. Materials, 2017, 10(1): 47
doi: 10.3390/ma10010047
|
53 |
Xi K B, Li Y L, Zheng Z S, et al. Research progress of lead-free piezoelectric ceramics based on potassium and sodium niobate [J]. China Cerami., 2020, 56(10): 20
|
53 |
席凯彪, 李远亮, 郑占申 等.铌酸钾钠基无铅压电陶瓷的研究现状和发展水平 [J]. 中国陶瓷, 2020, 56(10): 20
|
54 |
Fu Z Q. Study on the microstructure of KNN-based lead-free piezoelectric materials [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2018
|
54 |
傅正钱.铌酸钾钠基无铅压电材料微结构研究 [D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|