Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 51-60    DOI: 10.11901/1005.3093.2022.647
  研究论文 本期目录 | 过刊浏览 |
BNZ组分对KNN基无铅压电陶瓷结构和性能的影响
李博森, 廖忠新, 高大强()
兰州大学物理科学与技术学院 兰州 730030
Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics
LI Bosen, LIAO Zhongxin, GAO Daqiang()
School of Physical Science and Technology, Lanzhou University, Lanzhou 730030, China
引用本文:

李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
Bosen LI, Zhongxin LIAO, Daqiang GAO. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. Chinese Journal of Materials Research, 2024, 38(1): 51-60.

全文: PDF(9143 KB)   HTML
摘要: 

制备铌酸钾钠-锆酸铋钠(1-x)K0.48Na0.52Nb0.96Sb0.04O3-x(Bi0.5Na0.5)ZrO3二元系无铅压电陶瓷并表征其结构和性能,研究了BNZ组分对其结构和性能的影响。结果表明,这种系列压电陶瓷具有典型的钙钛矿结构。x =0.04的这种陶瓷最为致密,其相对密度为97.43%;压电性能最优:d33 = 463 pC/N、kp = 0.55、Qm = 37。这种陶瓷材料在室温下处于三方-四方(R-T)两相共存状态并具有纳米畴结构,使其压电性能优异。

关键词 无机非金属材料压电陶瓷铌酸钾钠纳米畴温度稳定性    
Abstract

In order to promote the practical application of lead-free piezoelectric ceramics, in this paper, a kind of sodium potassium niobate-sodium bismuth zirconate (1-x)K0.48Na0.52Nb0.96Sb0.04O3-x(Bi0.5Na0.5)ZrO3 lead-free piezoelectric ceramics were prepared, and their crystallographic structure and performance were assessed. Results show that their relative dielectric constant and the resonant frequency temperature are stable (< 10‰) with the variation of temperature; the piezoelectric ceramics are typical perovskite structure, and the most compact ceramic sample is obtained with x=0.04, which endows RD=97.43%, d33 = 463 pC/N, kp = 0.55 and Qm = 37; the piezoelectric ceramics consists of tripartite-tetragonal (R-T) two-phases and the existence of nanodomain structure may be the cause for the excellent piezoelectric properties of ceramic materials.

Key wordsinorganic non-metallic materials    piezoelectric ceramics    potassium sodium niobate    nanometer domain    temperature stability
收稿日期: 2022-12-07     
ZTFLH:  TQ174  
基金资助:甘肃省教育科技创新青年博士基金(2022QB-002);兰州大学奥迪威传感器有限公司联合研究院项目
通讯作者: 高大强,教授,gaodq@lzu.edu.cn,研究方向为压电陶瓷、二维磁性材料及电催化
Corresponding author: GAO Daqiang, Tel: 18919960427, E-mail: gaodq@lzu.edu.cn
作者简介: 李博森,男,1998年生,硕士生
图1  不同BNZ含量的铌酸钾钠-锆酸铋钠无铅压电陶瓷的SEM形貌和晶粒尺寸分布以及平均粒径尺寸
图2  不同BNZ含量的铌酸钾钠-锆酸铋钠无铅压电陶瓷的物性以及与类似体系的陶瓷[32~36]性能的对比
图3  不同x的铌酸钾钠-锆酸铋钠无铅压电陶瓷的室温XRD谱、精修和相比例分布
x00.020.030.040.050.06
PhaseOOTOTRTRTC
Ratio/%10080.2819.7262.2837.7215.8184.193.496.6100
a/nm0.39350.39610.39790.39650.39720.39650.39710.39880.39740.3978
b/nm0.56300.56410.39790.56390.39720.39650.39710.39880.39740.3978
c/nm0.56540.56520.39990.56460.40020.39650.40020.39880.40000.3991
c/a--1.0050-1.0076-1.0078-1.0065
表1  x = 0~0.06陶瓷样品的晶胞参数以及T相的c/a值
图4  KNNS-xBNZ陶瓷的室温拉曼光谱、各振动模式的拉曼位移、x = 0.04陶瓷的拉曼谱以及x = 0.04陶瓷的ν1和ν2振动模式的拟合线
图5  极化前后不同x的二组分陶瓷的低温区介电温谱、高温区介电温谱以及相变温度变化
图6  不同x陶瓷样品电滞回线全图、Ec、Pmax、Pr随x的变化、d33和εrPr随x的变化以及x = 0.04的陶瓷在-40~100oC以20oC作为对比的相对介电常数εr和串联谐振频率Fs的温度变化率随温度的变化
图7  x = 0.04的陶瓷样品的TEM和SEM形貌
1 Xiao D Q.Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics [J]. J. Adv. Dielectr., 2011, 1(1): 33
doi: 10.1142/S2010135X11000045
2 Aksel E, Jones J L.Advances in lead-free piezoelectric materials for sensors and actuators [J]. Sensors, 2010, 10(3): 1935
doi: 10.3390/s100301935 pmid: 22294907
3 Rödel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application [J]. J. Eur. Ceram. Soc., 2015, 35(6): 1659
doi: 10.1016/j.jeurceramsoc.2014.12.013
4 Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical properties in (K x Na1- x )NbO3 ceramics [J]. J. Appl. Phys., 2008, 103(8): 084116
5 Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432(7013): 84
doi: 10.1038/nature03028
6 Li P, Zhai J W, Shen B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics [J]. Adv. Mater., 2018, 30: 1705171
doi: 10.1002/adma.v30.8
7 Gao Y, Zhang J L, Qing Y L, et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic [J]. J. Am. Ceram. Soc., 2011, 94(9): 2968
doi: 10.1111/jace.2011.94.issue-9
8 Guo Y P, Kakimoto K I, Ohsato H.Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics [J]. Appl. Phys. Lett., 2004, 85(18): 4121
doi: 10.1063/1.1813636
9 Zheng T, Wu H J, Yuan Y, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics [J]. Energy Environ. Sci., 2017, 10(2): 528
doi: 10.1039/C6EE03597C
10 Wang X P, Wu J G, Xiao D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics [J]. J. Am. Chem. Soc., 2014, 136(7): 2905
doi: 10.1021/ja500076h pmid: 24499419
11 Zhang B Y, Wu J G, Cheng X J, et al. Lead-free piezoelectrics based on potassium-sodium niobate with giant d33 [J]. ACS Appl. Mater. Interfaces, 2013, 5(16): 7718
doi: 10.1021/am402548x
12 Zheng T, Wu J G, Xiao D Q, et al. Giant d33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics [J]. Scr. Mater., 2015, 94: 25
doi: 10.1016/j.scriptamat.2014.09.008
13 Zhou J S, Wang K, Yao F Z, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity [J]. J. Mater. Chem. C, 2015, 3(34): 8780
doi: 10.1039/C5TC01357G
14 Zuo R Z, Fu J.Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1467
doi: 10.1111/jace.2011.94.issue-5
15 Lv X, Wu J G, Yang S, et al. Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics [J]. ACS Appl. Mater. Interfaces, 2016, 8(29): 18943
doi: 10.1021/acsami.6b04288
16 Cheng X J, Wu J G, Wang X P, et al. Giant d33 in (K, Na)(Nb, Sb)O3-(Bi, Na, K, Li)ZrO3 based lead-free piezoelectrics with high Tc [J]. Appl. Phys. Lett., 2013, 103: 052906
17 Wu J G, Wang X P, Cheng X J, et al. New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature [J]. J. Appl. Phys., 2014, 115(11): 114104
doi: 10.1063/1.4868585
18 Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium-sodium niobate lead‐free ceramics [J]. Adv. Mater., 2016, 28(38): 8519
doi: 10.1002/adma.v28.38
19 Jiang L M, Xing J, Tan Z, et al. High piezoelectricity in (K, Na)(Nb, Sb)O3-(Bi, La, Na, Li)ZrO3 lead-free ceramics [J]. J. Mater. Sci., 2016, 51(10): 4963
doi: 10.1007/s10853-016-9801-2
20 Wu B, Wu H J, Wu J G, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence [J]. J. Am. Chem. Soc., 2016, 138(47): 15459
pmid: 27933925
21 Zheng T, Wu J G, Xiao D Q, et al. Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics [J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20332
doi: 10.1021/acsami.5b06033
22 Jiang L M, Li Y Y, Xing J, et al. Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics [J]. Ceram. Int., 2017, 43(2): 2100
doi: 10.1016/j.ceramint.2016.10.189
23 Tao H, Wu J G.Giant piezoelectric effect and high strain response in (1-x)(K0.45Na0.55)(Nb1- y Sb y )O3-xBi0.5Na0.5Zr1- z Hf z O3 lead-free ceramics [J]. J. Eur. Ceram. Soc., 2016, 36(7): 1605
doi: 10.1016/j.jeurceramsoc.2016.01.043
24 Xing J, Tan Z, Jiang L M, et al. Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5-Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics [J]. J. Appl. Phys., 2016, 119(3): 034101
25 Hollenstein E, Damjanovic D, Setter N.Temperature stability of the piezoelectric properties of Li-modified KNN ceramics [J]. J. Eur. Ceram. Soc., 2007, 27(13-15): 4093
doi: 10.1016/j.jeurceramsoc.2007.02.100
26 Wu J G, Xiao D Q, Zhu J G.Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries [J]. Chem. Rev., 2015, 115(7): 2559
doi: 10.1021/cr5006809 pmid: 25792114
27 Zhang S J, Xia R, Shrout T R, et al. Piezoelectric properties in per-ovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics [J]. J. Appl. Phys., 2006, 100(10): 104108
doi: 10.1063/1.2382348
28 Wu J G. Development and prospect of potassium sodium niobate-based lead-free piezoelectric ceramics [J]. J. Sichuan Norm. Univ. (Nat. Sci.), 2019, 42(2): 143
28 吴家刚.铌酸钾钠基无铅压电陶瓷的发展与展望 [J]. 四川师范大学学报(自然科学版), 2019, 42(2): 143
29 Pang X M, Qiu J H, Zhu K J, et al. (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering [J]. Ceram. Int., 2012, 38(3): 2521
doi: 10.1016/j.ceramint.2011.11.022
30 Wang C J, Huang C Y, Wu Y C.Two-step sintering of fine alumina-zirconia ceramics [J]. Ceram. Int., 2009, 35(4): 1467
doi: 10.1016/j.ceramint.2008.08.001
31 Zhang J L, Qin Y L, Gao Y.Improvement of physical properties for KNN-based ceramics by modified two-step sintering [J]. J. Am. Ceram. Soc., 2014, 97(3): 759
doi: 10.1111/jace.2014.97.issue-3
32 Zhao R J, Li Y L, Zheng Z S, et al. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics [J]. Mater. Chem. Phys., 2020, 245: 122806
doi: 10.1016/j.matchemphys.2020.122806
33 Qin Y L, Zhang J L, Yao W Z, et al. Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50-ZrO3 piezoceramics with high d33 coefficient [J]. ACS Appl. Mater. Interfaces, 2016, 8(11): 7257
doi: 10.1021/acsami.6b00377
34 Shi C Y, Ma J, Wu J, et al. (Bi0.5Na0.5)ZrO3 modified KNN-based ceramics: Enhanced electrical properties and temperature insensitivity [J]. Ceram. Int., 2020, 46(3): 2798
doi: 10.1016/j.ceramint.2019.09.271
35 Tan L M, Sun Q, Wang Y Y.Outstanding piezoelectric properties of Al-substituted potassium-sodium niobate-based lead-free piezoceramics [J]. J. Alloys Compd., 2020, 836: 155419
doi: 10.1016/j.jallcom.2020.155419
36 Lee M K, Yang S A, Park J J, et al. Proposal of a rhombohedral-tetragonal phase composition for maximizing piezoelectricity of (K, Na) NbO3 ceramics [J]. Sci. Rep., 2019, 9: 4195
doi: 10.1038/s41598-019-40943-6
37 Takahashi M.Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities [J]. Jpn. J. Appl. Phys., 1970, 9(10): 1236
doi: 10.1143/JJAP.9.1236
38 Li B Z, Blendell J E, Bowman K J.Temperature‐dependent poling behavior of lead‐free BZT-BCT piezoelectrics [J]. J. Am. Ceram. Soc., 2011, 94(10): 3192
doi: 10.1111/jace.2011.94.issue-10
39 Lv X, Wu J G, Zhu J G, et al. A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction [J]. J. Eur. Ceram. Soc., 2018, 38(1): 85
doi: 10.1016/j.jeurceramsoc.2017.08.016
40 Xing J, Chen H, Jiang L M, et al. High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting [J]. Nano Energy, 2021, 84: 105900
doi: 10.1016/j.nanoen.2021.105900
41 Lake C H, Toby B H.Recent developments targeting new and experienced users in EXPGUI, an open source Rietveld analysis interface [J]. Z. Kristallogr., 2011, 226(12): 892
doi: 10.1524/zkri.2011.1378
42 Orayech B, Faik A, López G A, et al. Mode-crystallography analysis of the crystal structures and the low- and high-temperature phase transitions in Na0.5K0.5NbO3 [J]. J. Appl. Cryst., 2015, 48: 318
doi: 10.1107/S1600576715000941
43 Tan L M. Phase boundary construction and electrical properties of lead-free piezoelectric ceramics based on potassium sodium niobate [D].Guiyang:Guizhou University,2021
43 谭柳茂.铌酸钾钠基无铅压电陶瓷的相界构建及其电学性能研究 [D]. 贵阳: 贵州大学, 2021
44 Wei X W, Tao H, Zhao C L, et al. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics [J]. Acta Phys. Sin., 2020, 69(21): 217705
doi: 10.7498/aps
44 魏晓薇, 陶 红, 赵纯林 等.高性能铌酸钾钠基无铅陶瓷的压电和电卡性能 [J]. 物理学报, 2020, 69(21): 217705
45 Lv X, Wu J G, Zhang X X.A new concept to enhance piezoelectricity and temperature stability in KNN ceramics [J]. Chem. Eng. J., 2020, 402: 126215
doi: 10.1016/j.cej.2020.126215
46 Yao F Z, Wang K, Jo W, et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics [J]. Adv. Funct. Mater., 2016, 26(8): 1217
doi: 10.1002/adfm.v26.8
47 Chen X M, Wang M Y, Tomoaki K, et al. Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics [J]. Acta Phys. Sin., 2021, 70(19): 197701
doi: 10.7498/aps
47 陈小明, 王明焱, 唐木智明 等.CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性 [J]. 物理学报, 2021, 70(19): 197701
48 Lee G M, Kim B H.Effects of thermal aging on temperature stability of Pb(Zr y Ti1- y )O3 + x(wt.%)Cr2O3 ceramics [J]. Mater. Chem. Phys., 2005, 91(1): 233
doi: 10.1016/j.matchemphys.2004.09.034
49 Liang C K, Wu L, Wu T S.Temperature stability of resonant frequency of ternary PZT ceramics at the MPB by variation of sintering and poling treatment [J]. Ferroelectrics, 1991, 120(1): 185
doi: 10.1080/00150199108008242
50 Yang J, Gao Z P, Liu Y, et al. Time dependence of domain structures in potassium sodium niobate-based piezoelectric ceramics [J]. RSC Adv., 2021, 11(33): 20057
doi: 10.1039/d1ra03304b pmid: 35479898
51 Sun X X, Zhang J W, Lv X, et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature [J]. J. Mater. Chem. A, 2019, 7(28): 16803
doi: 10.1039/C9TA03799C
52 Alikin D, Turygin A, Kholkin A, et al. Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics [J]. Materials, 2017, 10(1): 47
doi: 10.3390/ma10010047
53 Xi K B, Li Y L, Zheng Z S, et al. Research progress of lead-free piezoelectric ceramics based on potassium and sodium niobate [J]. China Cerami., 2020, 56(10): 20
53 席凯彪, 李远亮, 郑占申 等.铌酸钾钠基无铅压电陶瓷的研究现状和发展水平 [J]. 中国陶瓷, 2020, 56(10): 20
54 Fu Z Q. Study on the microstructure of KNN-based lead-free piezoelectric materials [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2018
54 傅正钱.铌酸钾钠基无铅压电材料微结构研究 [D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[9] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[10] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.