Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 61-70    DOI: 10.11901/1005.3093.2023.158
  研究论文 本期目录 | 过刊浏览 |
碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能
马源1,2, 王函1, 倪忠强1,2, 张建岗1,2, 张若南1,2, 孙新阳1,2, 李处森1(), 刘畅1,2, 曾尤1,2()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites
MA Yuan1,2, WANG Han1, NI Zhongqiang1,2, ZHANG Jiangang1,2, ZHANG Ruonan1,2, SUN Xinyang1,2, LI Chusen1(), LIU Chang1,2, ZENG You1,2()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
Yuan MA, Han WANG, Zhongqiang NI, Jiangang ZHANG, Ruonan ZHANG, Xinyang SUN, Chusen LI, Chang LIU, You ZENG. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. Chinese Journal of Materials Research, 2024, 38(1): 61-70.

全文: PDF(8388 KB)   HTML
摘要: 

在碳纤维上原位生长氧化锌纳米线、沉积碳纳米管薄膜,经叠层铺设和真空辅助树脂浸渍成型制备出叠层混杂碳纤维/环氧树脂复合材料,表征其微观结构并系统地研究了这种材料的电导率和电磁屏蔽性能。结果表明,这种复合材料(厚度为2 mm)在8.2~12.4 GHz波段的电磁屏蔽效能达到50 dB,比碳纤维复合材料提高了51.52%。这种材料的优异性能,可归因于氧化锌纳米线的高效介电损耗、连续碳纳米管薄膜的高导电性、层间多组元界面的多重反射和高效吸收损耗。

关键词 复合材料电磁屏蔽性能叠层混杂结构氧化锌纳米线碳纳米管    
Abstract

Developing advanced composites with high electromagnetic shielding effectiveness is of great significance to ensure safety and reliability of electronic devices in complex electromagnetic environments. We proposed a novel strategy to fabricate carbon fiber-based hybrid composites by in-situ growing zinc oxide (ZnO) nanowires onto carbon fiber (CF) and subsequently depositing carbon nanotubes (CNT), and infiltrating epoxy (EP) into laminated layers through vacuum-assisted resin transfer molding technique. Microstructures, electrical conductivity, and electromagnetic shielding performance of the acquired CNT-ZnO-CF/EP hybrid composites were investigated in detail. The hybrid composites of 2 mm thickness exhibited excellent electromagnetic shielding performance, and their total electromagnetic shielding effectiveness was up to 50 dB in the 8.2~12.4 GHz band, increasing by 51.52% in comparison to the CF/EP composites. Such high performance is mainly attributed to the high dielectric loss of ZnO nanowires, high electrical conductivity of continuous CNT films, and multiple reflection/absorption losses between laminated structures and multi-component interfaces. This work paves a way for development of advanced composites with high-efficiency electromagnetic shielding and structure/function integration.

Key wordscomposites    electromagnetic shielding performance    laminated hybrid structures    zinc oxide nanowires    carbon nanotubes
收稿日期: 2023-03-06     
ZTFLH:  TB332  
基金资助:国家自然科学基金(52130209);国家自然科学基金(51802317);辽宁省自然科学基金(22-KF-12-04);纳米功能复合材料山西省重点实验室开放基金(NFCM202102);中国科学院金属所所创基金(2022-PY07);沈阳材料科学国家研究中心项目(2022-FP35);沈阳市科技计划项目(22-316-1-04)
通讯作者: 曾尤,研究员,yzeng@imr.ac.cn,研究方向为纳米炭复合材料;
李处森,副研究员,csli@imr.ac.cn,研究方向为超宽频带吸波材料
Corresponding author: ZENG You, Tel: (024)83978090, E-mail: yzeng@imr.ac.cn;
LI Chusen, Tel: (024)83978019, E-mail: csli@imr.ac.cn
作者简介: 马 源,男,1996年生,硕士生
SampleCNT / %ZnO / %CF / %EP / %Density / g·cm-3
CF/EP--50.050.01.356
ZnO-CF/EP-1.550.647.91.363
CNT-ZnO-CF/EP0.21.452.046.41.368
表1  复合材料组元的含量和密度
图1  CNT-ZnO-CF/EP叠层混杂复合材料的制备流程
图2  ZnO-CF的制备过程示意图、CF、PDA-CF、ZnO seed-CF和ZnO-CF的SEM照片、改性碳纤维的红外光谱、拉曼光谱、XRD谱以及热失重曲线
图3  用FCCVD法在ZnO-CF表面沉积CNT的装置示意图、CF表面沉积ZnO与CNT薄膜后的光学照片、CNT薄膜的SEM照片和拉曼光谱
图4  CF/EP、ZnO-CF/EP、CNT-ZnO-CF/EP复合材料的光学照片以及CF/EP、ZnO-CF/EP和CNT-ZnO-CF/EP复合材料脆断面的SEM照片
图5  CF、ZnO-CF和CNT-ZnO-CF的表面电导率和混杂复合材料的面内与面外体积电导率
图6  复合材料的总电磁屏蔽效能、反射与吸收效能、反射与吸收系数、介电常数实部、介电常数虚部、损耗角正切值以及电磁屏蔽机理示意图
1 Mikinka E, Siwak M.Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review [J]. J. Mater. Sci. Mater. Electron., 2021, 32(20): 24585
doi: 10.1007/s10854-021-06900-8
2 Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res., 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
2 王闻宇, 刘亚敏, 金 欣 等.聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
3 Wang Y, Zhang H Q, Liang Y. The preparation and performance study of carbon fiber/epoxy resin composites based on electromagnetic shielding properties strengthen [J]. Mater. Sci., 2018, 8(4): 367
doi: 10.1007/BF00730463
3 王 勇, 张会青, 梁 祎 等.基于电磁屏蔽性能强化的碳纤维/环氧树脂复合材料的制备及性能研究 [J]. 材料科学, 2018, 8(4): 367
4 Zhu H X, Fu K K, Yang B, et al. Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite [J]. Compos. Sci. Technol., 2021, 207: 108675
doi: 10.1016/j.compscitech.2021.108675
5 Chen Y, Zhang D J, Li J, et al. Preparation and performance evaluation of carbon fiber/epoxy composites modified with graphene prepregs [J]. J. Mater. Eng., 2020, 48(10): 82
doi: 10.11868/j.issn.1001-4381.2019.000848
5 陈 宇, 张代军, 李 军 等.石墨烯改性碳纤维树脂基复合材料的制备和性能评价 [J]. 材料工程, 2020, 48(10): 82
6 Wang X, He Y L, Tang J, et al. Mechanical and electromagnetic shielding properties of Al particle sandwich CFRP composites [J]. J. Mater. Eng., 2023, 51(1): 140
doi: 10.11868/j.issn.1001-4381.2022.000450
6 王 宪, 贺雍律, 唐 俊 等.Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能 [J]. 材料工程, 2023, 51(1): 140
7 Merizgui T, Prakash V R A, Gaoui B, et al. Microwave shielding performance of TiO2/Co/GF containing high structure carbon fiber alternate laminate composite [J]. J. Mater. Sci. Mater. Electron., 2022, 33(2): 934
doi: 10.1007/s10854-021-07365-5
8 Parameswarreddy G, Vinayakumar A, Subramanian V, et al. Investigation on electromagnetic shielding and mechanical properties of zirconia graded carbon fiber/epoxy nanocomposite [J]. Polym. Compos., 2022, 43(12): 8795
doi: 10.1002/pc.v43.12
9 Ahmad H S, Hussain T, Nawab Y, et al. Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy composites [J]. J. Compos. Mater., 2022, 56(1): 69
doi: 10.1177/00219983211052615
10 Babu M, Bapu B R T, Muruganantham P, et al. Role of cashew shell biochar on EMI shielding behaviour of carbon fibre-epoxy nanocomposites in E, F, I and J band-microwave frequencies [J]. Biomass Convers. Biorefin., 2023, 13(1): 375
doi: 10.1007/s13399-022-02617-8
11 Zhang C, Ling Y Q, Zhang X Q, et al. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field [J]. Compos. Part A-Appl. Sci. Manuf., 2022, 163: 107197
doi: 10.1016/j.compositesa.2022.107197
12 Rohini R, Verma K, Bose S.Interfacial architecture constructed using functionalized MWNT resulting in enhanced EMI shielding in epoxy/carbon fiber composites [J]. ACS Omega, 2018, 3(4): 3974
doi: 10.1021/acsomega.8b00218 pmid: 31458635
13 Liu Y, Wang F Q, Liu P, et al. Carbon nanotube carbon fiber composites study on the performance of EMC [J]. Mater. Sci., 2018, 8(6): 650
13 刘 艳, 王富强, 刘 鹏 等.基于碳纳米管-碳纤维复合材料电磁兼容性能的研究 [J]. 材料科学, 2018, 8(6): 650
14 Li Q Z, Sun Y H, Li G, et al. Enhancing interfacial and electromagnetic interference shielding properties of carbon fiber composites via the hierarchical assembly of the MWNT/MOF interphase [J]. Langmuir, 2022, 38(46): 14277
doi: 10.1021/acs.langmuir.2c02344 pmid: 36351284
15 Rohini R, Bose S.Extraordinary improvement in mechanical properties and absorption-driven microwave shielding through epoxy-grafted graphene "interconnects" [J]. ACS Omega, 2018, 3(3): 3200
doi: 10.1021/acsomega.7b01997 pmid: 31458577
16 Chen W, Wang J, Zhang B, et al. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites [J]. Mater. Res. Express, 2017, 4(12): 126303
doi: 10.1088/2053-1591/aa9af9
17 Jang D, Choi B H, Yoon H N, et al. Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites [J]. Compos. Struct., 2022, 286: 115326
doi: 10.1016/j.compstruct.2022.115326
18 Duan N, Shi Z, Wang J, et al. Multilayer-structured carbon fiber fabric/graphene oxide/Fe3O4/epoxy composite for highly efficient mechanical and electromagnetic interference shielding [J]. Appl. Surf. Sci., 2023, 613: 156038
doi: 10.1016/j.apsusc.2022.156038
19 Abbasi H, Antunes M, Velasco J I.Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding [J]. Prog. Mater. Sci., 2019, 103: 319
doi: 10.1016/j.pmatsci.2019.02.003
20 Wu G, Chen Y, Zhan H, et al. Ultrathin and flexible carbon nanotube/polymer composite films with excellent mechanical strength and electromagnetic interference shielding [J]. Carbon, 2020, 158: 472
doi: 10.1016/j.carbon.2019.11.014
21 Chen Y, Zhang H B, Yang Y, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding [J]. Adv. Funct. Mater., 2016, 26(3): 447
doi: 10.1002/adfm.v26.3
22 Han L Y, Li K Z, Fu Y Q, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance [J]. Compos. Sci. Technol., 2022, 222: 109407
doi: 10.1016/j.compscitech.2022.109407
23 Jia Z X, Zhang M F, Liu B, et al. Graphene foams for electromagnetic interference shielding: A review [J]. ACS Appl. Nano Mater., 2020, 3(7): 6140
doi: 10.1021/acsanm.0c00835
24 Singh B P, Choudhary V, Saini P, et al. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding [J]. AIP Adv., 2012, 2(2): 2151
25 Qiu B W, Zhang X Q, Xia S, et al. Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance [J]. Compos. Part A-Appl. Sci. Manuf., 2022, 155: 106811
doi: 10.1016/j.compositesa.2022.106811
26 Rohini R, Bose S.Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption [J]. Compos. Part B-Eng., 2019, 161: 578
doi: 10.1016/j.compositesb.2018.12.123
27 Song C Q, Yin X W, Han M K, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
doi: 10.1016/j.carbon.2017.01.077
28 Song C, Yin X, Han M, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
doi: 10.1016/j.carbon.2017.01.077
29 Wang L, Li X, Li Q Q, et al. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth [J]. Small, 2019, 15(18): 1900900
doi: 10.1002/smll.v15.18
30 Jiao Z, Huyan W, Yao J, et al. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113: 166
doi: 10.1016/j.jmst.2021.09.024
31 Jiang S, Hou P X, Liu C, et al. High-performance single-wall carbon nanotube transparent conductive films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2447
doi: 10.1016/j.jmst.2019.07.011
32 Xu H, Tong X, Zhang Y Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves [J]. Compos. Sci. Technol., 2016, 127: 113
doi: 10.1016/j.compscitech.2016.02.032
33 Wu Y, Wang Z Y, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9059
doi: 10.1021/acsami.7b01017
34 Lin B Y, Ehlert G, Sodano H A.Increased interface strength in carbon fiber composites through a ZnO nanowire interphase [J]. Adv. Funct. Mater., 2009, 19(16): 2654
doi: 10.1002/adfm.v19:16
35 Zheng N, Huang Y D, Sun W F, et al. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates [J]. Carbon, 2016, 110: 69
doi: 10.1016/j.carbon.2016.09.002
36 Li J H, Sun J, Li S M, et al. Electromagnetic characteristics of different shape ZnO composite [J]. J. B. Univ. Aeronaut Astronaut, 2004, 30(9): 822
36 刘建华, 孙 杰, 李松梅 等.不同形貌氧化锌的微波电磁性能研究 [J]. 北京航空航天大学学报, 2004, 30(9): 822
37 Cheng L. Research on solution growth for preparation and electromagnetic wave absorption performance of needle stick-ZnO [J]. China Ceramics, 2019, 55(11): 46
37 程 磊.溶液生长法制备多针状氧化锌及其吸波性能的研究 [J]. 中国陶瓷, 2019, 55(11): 46
38 Luo D, Fei J, Zhang C, et al. Optimization of mechanical and tribological properties of carbon fabric/resin composites via controlling ZnO nanorods morphology [J]. Ceram. Int., 2018, 44(13): 15393
doi: 10.1016/j.ceramint.2018.05.191
39 Fei J, Luo D, Huang J F, et al. Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance [J]. Surf. Coat. Technol., 2018, 344: 433
doi: 10.1016/j.surfcoat.2018.03.056
40 Lian Q S, Xu W J, Chen H F, et al. Dual synergistic effect of a carbon/metal hybrid network on the mechanical and electromagnetic interference shielding performance in self-assembly enhanced epoxy curing networks [J]. J. Mater. Chem. C, 2021, 9(29): 9282
doi: 10.1039/D1TC01246K
41 Kim B J, Cha S H, Kong K, et al. Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber [J]. Compos. Sci. Technol., 2018, 165: 362
doi: 10.1016/j.compscitech.2018.07.015
42 Wu B, Qian G, Yan Y, et al. Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity [J]. ACS Appl. Mater. Interfaces, 2022, 14(43): 49082
doi: 10.1021/acsami.2c13433
43 Shi J F, Kong W W, Zou K K, et al. Enhanced mechanical and electromagnetic interference shielding performance of carbon fiber/epoxy composite with intercalation of modified aramid fiber [J]. Colloids Surf. A, 2023, 661: 130959
doi: 10.1016/j.colsurfa.2023.130959
[1] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 董哲瑄, 陈平, 刘兴达. 等离子体处理对CF/PI复合材料高温界面性能的影响[J]. 材料研究学报, 2023, 37(12): 900-906.