Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 43-50    DOI: 10.11901/1005.3093.2022.583
  研究论文 本期目录 | 过刊浏览 |
选区激光熔融Al-30Si合金的微观组织和性能
秦艳利1, 赵光普1, 张昊2(), 倪丁瑞2(), 肖伯律2, 马宗义2
1 沈阳理工大学理学院 沈阳 110158
2 中国科学院金属研究所 沈阳 110016
Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting
QIN Yanli1, ZHAO Guangpu1, ZHANG Hao2(), NI Dingrui2(), XIAO Bolv2, MA Zongyi2
1 Shenyang Ligong University, College of Science, Shenyang 110158, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
Yanli QIN, Guangpu ZHAO, Hao ZHANG, Dingrui NI, Bolv XIAO, Zongyi MA. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2024, 38(1): 43-50.

全文: PDF(13396 KB)   HTML
摘要: 

用选区激光熔融技术(SLM)制备Al-30Si合金,研究了去应力退火后样品的显微组织、力学性能和热物理性能。结果表明:SLM成形的Al-30Si合金样品经300℃/6 h退火后其室温抗拉强度为254 ± 3 MPa,比铸态加工的Al-30Si合金的抗拉强度提高53.5%,硬度为176.89 ± 8.5HV、比刚度为35.18 m2/s2。SLM成形样品温度为-100℃~200℃时的热膨胀系数为13.8 × 10-6/℃~16.3 × 10-6/℃,平均热导率为70.52 W·m-1·K-1。快速冷却的特性能够细化SLM成形样品的初晶Si颗粒,使成形Al-30Si合金具有较好的综合性能,其高比刚度和较低的热膨胀系数有望使服役于特殊环境的光机结构件保持高度的尺寸稳定性。

关键词 金属材料选区激光熔融Al-30Si合金微观组织物理性能    
Abstract

The bulk material of the hyper-eutectic Al-30Si alloy was prepared via selective laser melting (SLM) technique, aiming to solve the problem of high brittleness, easy cracking, and difficulty in precise forming caused by the coarsening of primary Si in the alloy due to the coarsening of primary Si particles in the alloy during ordinary making process. Then the microstructure, mechanical properties, and thermal properties of the SLM alloy after stress-relief annealing were studied. The results showed that the room temperature tensile strength of the SLM Al-30Si alloy after annealing was 254 ± 3 MPa, which was 53.5% higher than that of the cast alloy. The hardness was 176.89 ± 8.5 HV and the specific stiffness was 35.18 m2/s2. In terms of thermal properties, the thermal expansion coefficient of the SLM Al-30Si alloy is 13.8 to 16.3 × 10-6/oC in the temperature range of -100~200oC, and the average thermal conductivity is 70.52 W·m-1·K-1. The study found that the rapid cooling characteristic of SLM could refine the primary Si particles, making the formed Al-30Si alloy have good comprehensive properties. The high specific stiffness and low thermal expansion coefficient are expected to maintain high dimensional stability for optical components.

Key wordsmetallic materials    selective laser melting    Al-30Si alloy    microstructure    physical properties
收稿日期: 2022-11-04     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(U21A2043);国家自然科学基金(51871215);中国科学院青年创新促进会项目(2022191);魏桥国科高研院-中科院金属所研发项目(GYY-JSBU-2022-010);辽宁省教育厅面上重点项目(LJKZ0238)
通讯作者: 张昊,副研究员,haozhang@imr.ac.cn,研究方向为激光增材制造研究;
倪丁瑞,研究员,drni@imr.ac.cn,研究方向为有色金属连接与加工制备相关研究
Corresponding author: ZHANG Hao, Tel: (024)23971752, E-mail: haozhang@imr.ac.cn;
NI Dingrui, Tel: (024)83970809, E-mail: drni@imr.ac.cn
作者简介: 秦艳利,女,1979年生,副教授
图1  Al-30Si粉末和截面的微观组织
Laser power / WScanning velocity / m·s-1Density / g·cm-3
2501.52.514
2751.52.528
3001.82.516
表1  SLM参数和Al-30Si样品的密度
图2  Al-30Si粉末、打印态和退火后样品的XRD谱
图3  SLM成形Al-30Si合金熔池的形貌
图4  SLM成形Al-30Si合金的打印态和退火后的显微组织
MaterialsDensity / g·cm-3Elastic modulus / GPaSpecific stiffness / m2·s-2
Al[25]2.7068.0025.19
TC4[25]4.40114.0025.91
Mg-Al alloy[25]1.8040.0022.22
AlSi10Mg[26]2.6271.0027.10
Al-30Si in this study2.5389.0035.18
表2  常用光机结构件材料的比刚度
图5  Al-30Si合金的拉伸性能
图6  退火样品拉伸断口的形貌
图7  SLM成形Al-30Si合金退火后的热膨胀系数
图8  SLM成形Al-30Si合金退火后的热导率
1 Zhuo X, Xu H, Wu Y, et al. Effect of eutectic Si size on the flow behavior and hot processing map of near eutectic Al-Si alloys [J]. J. Mater. Res. Technol-JMRT., 2021, 15: 5694
2 Galy C, Le G E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences [J]. Addit. Manuf., 2018, 22: 165
3 Hyer H, Zhou L, Mehta A, et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion [J]. Acta Mater., 2021, 208: 116698
doi: 10.1016/j.actamat.2021.116698
4 Wang F, Xiong B, Zhang Y, et al. Microstructure, thermo-physical and mechanical properties of spray-deposited Si-30Al alloy for electronic packaging application [J]. Mater. Charact., 2008, 59(10): 1455
doi: 10.1016/j.matchar.2008.01.012
5 Mueller M, Riede M, Eberle S, et al. Microstructural, mechanical, and thermo-physical characterization of hypereutectic AlSi40 fabricated by selective laser melting [J]. J. Laser Appl., 2019, 31(2): 022321
6 Maamoun A H, Elbestawi M, Dosbaeva G K, et al. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder [J]. Addit. Manuf., 2018, 21: 234
7 McDonald S D, Nogita K, Dahle A K.Eutectic nucleation in Al-Si alloys [J]. Acta Mater., 2004, 52(14): 4273
doi: 10.1016/j.actamat.2004.05.043
8 Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys [J]. J. Alloy. Compd., 2009, 487(1-2): 157
doi: 10.1016/j.jallcom.2009.07.183
9 Rao A G, Rao B R K, Deshmukh V P, et al. Microstructural refinement of a cast hypereutectic Al-30Si alloy by friction stir processing [J]. Mater. Lett., 2009, 63(30): 2628
doi: 10.1016/j.matlet.2009.09.022
10 Farahany S, Ourdjini A, Bakar T A A, et al. On the Refinement Mechanism of Silicon in Al-Si-Cu-Zn Alloy with Addition of Bismuth [J]. Metall. Mater. Sci., 2014, 45(3): 1085
11 Wang F, Liu Z, Qiu D, et al. Revisiting the role of peritectics in grain refinement of Al alloys [J]. Acta Mater., 2013, 61(1): 360
doi: 10.1016/j.actamat.2012.09.075
12 Hegde S, Prabhu K N.Modification of eutectic silicon in Al-Si alloys [J]. J. Mater. Sci., 2008, 43(9): 3009
doi: 10.1007/s10853-008-2505-5
13 Jia Y, Cao F, Scudino S, et al. Microstructure and thermal expansion behavior of spray-deposited Al-50Si [J]. Mater. Des., 2014, 57: 585
doi: 10.1016/j.matdes.2013.12.066
14 Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium [J]. Chin. J. Mater. Res., 2019, 33(02): 117
14 李改明, 刘思雨, 战德松 等.3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33(02): 117
15 Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges [J]. Mater. Des., 2019, 183: 108137
doi: 10.1016/j.matdes.2019.108137
16 Benedetti M, du Plessis A, Ritchie R O, et al. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication [J]. Mater. Sci. Eng., 2021, 144: 100606
doi: 10.1016/j.mser.2021.100606
17 Yang D, Pan C, Zhou Y, et al. Optimized design and additive manufacture of double-sided metal mirror with self-supporting lattice structure [J]. Mater. Des., 2022, 219: 110759
doi: 10.1016/j.matdes.2022.110759
18 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic [J]. Chin. J. Lasers., 2020, 47(5): 32
18 顾冬冬, 张红梅, 陈洪宇 等.航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47(5): 32
19 Li X P, Kang C W, Huang H, et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting [J]. Mater. Des., 2014, 63: 407
doi: 10.1016/j.matdes.2014.06.022
20 Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
21 Wang Y, Wang J J, Zhang H, et al. Effects of heat treatments on microstructure and mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Acta. Metall. Sin., 2021, 57(05): 613
21 王 悦, 王继杰, 张 昊 等.热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响 [J]. 金属学报, 2021, 57(05): 613
22 Dai K, Shaw L.Thermal and stress modeling of multi-material laser processing [J]. Acta. Mater., 2001, 49(20): 4171
doi: 10.1016/S1359-6454(01)00312-3
23 Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode [J]. Mater. Des., 2017, 135: 257
doi: 10.1016/j.matdes.2017.09.014
24 Sun Y, Chen Z H. Mixed solid-liquid casting of Al-30Si alloy. [J]. Ordnance Mater. Sci. Eng., 2005, 28(2): 27
24 孙 亦, 陈振华.Al-30Si合金的固液混合铸造 [J]. 兵器材料科学与工程, 2005, 28(2): 27
25 Ren J Y, Chen C Z, He B, et al. Application of SiC and SiC/Al to TMA optical remote sensor [J]. Opt. Precis. Eng., 2008, 16(12): 2537
25 任建岳, 陈长征, 何 斌 等.SiC和SiC/Al在TMA空间遥感器中的应用 [J]. 光学精密工程, 2008, 16(12): 2537
26 Zhang D, Yi D, Wu X, et al. SiC reinforced AlSi10Mg composites fabricated by selective laser melting [J]. J. Alloy. Compd., 2022, 894: 162356
27 Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2013, 590, 153
doi: 10.1016/j.msea.2013.10.023
28 Scudino S, Liu G, Sakaliyska M, et al. Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties [J]. Acta Mater., 2009, 57, 4529
doi: 10.1016/j.actamat.2009.06.017
29 Ma P, Prashanth K G, Scudino S, et al. Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting [J] Acta Mater., 2014, 4(1), 28
30 Xiong X C. The study on high thermal conductivity and low expansion high silicon aluminum alloy [D]. Wuhan: Huazhong University of Science & Technology, 2017
30 熊歆晨.高导热低膨胀高硅铝合金的研究 [D]. 华中科技大学, 2017
31 Tan S, Wang Y, Liu W, et al. Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors [J]. J. Mater. Sci., 2022, 57(25): 11934
doi: 10.1007/s10853-022-07080-4
[1] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[2] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[3] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[7] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[8] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[9] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[10] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[11] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.