|
|
单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析 |
王胜1, 周俏亭2, 占慧敏3, 陈晶晶4( ) |
1.衢州职业技术学院机电工程学院 衢州 324000 2.南昌理工学院人文教育学院 南昌 330044 3.南昌理工学院计算机信息工程学院 南昌 330044 4.南昌理工学院机电工程学院 南昌 330044 |
|
Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation |
WANG Sheng1, ZHOU Qiaoting2, ZHAN Huimin3, CHEN Jingjing4( ) |
1.Department of Mechanical Engineering, Quzhou College of Technology, Quzhou 324000, China 2.School of Humanities Education, Nanchang Institute of Technology, Nanchang 330044, China 3.School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang 330044, China 4.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China |
引用本文:
王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
Sheng WANG,
Qiaoting ZHOU,
Huimin ZHAN,
Jingjing CHEN.
Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. Chinese Journal of Materials Research, 2023, 37(12): 943-951.
1 |
Woodilla D, Buonomo M, Bar-On I, et al. Elevated-temperature behavior of high-strength silicon carbide [J]. J. Am. Ceram. Soc., 1993, 76: 249
doi: 10.1111/jace.1993.76.issue-1
|
2 |
Talwar D N, Sherbondy J C. Thermal expansion coeffificient of 3C-SiC [J]. Appl. Phys. Lett., 1995, 67: 3301
doi: 10.1063/1.115227
|
3 |
Demenet J L, Amer M, Tromas C. Dislocations in 4H-and 3C-SiC single crystals in the brittle regime [J]. Phys. Status.Solidi-C, 2013, 10: 64
|
4 |
Miranda A, Cuevas J L, Ramos A E, et al. Quantum confinement effects on electronic properties of hydrogenated 3C-SiC nanowires [J]. Microelectronics, 2009, 40: 796
doi: 10.1016/j.mejo.2008.11.034
|
5 |
Wang G B, Lei Y Z. Concerning and developing tribology, promoting sustainable economic development [J]. Prog. Nat. Sci., 2005, 15: 571
|
6 |
Department of Engineering and Materials Science, National Natural Science Foundation of China. Mechanical Engineering Development Strategy Report (2011-2020) [R] Beijing: Science Press, 2010
|
6 |
国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2011-2020) [R]. 北京: 科学出版社, 2010
|
7 |
Mylvaganam K, Zhang L C, Eyben P, et al. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification [J]. Nanotechnology, 2009, 20: 305705
doi: 10.1088/0957-4484/20/30/305705
|
8 |
Du X C. Molecular dynamics investigations of temperature effects on the nano-indentation/scratching response of typical single crystal materials [D]. Changchun: Jilin University, 2016
|
8 |
杜宪成. 温度对典型单晶材料纳米压痕/划痕响应影响的分子动力学解析 [D]. 长春: 吉林大学, 2016
|
9 |
Zhang Q, Chen J J, Song M M, et al. Original analysis of adhesion produced for semiconductor silicon device based on atomic simulation [J]. Sur. Tech., 2021, 50: 269
|
10 |
Shi Y J, Chen X B, Wu X J, et al. Deformation mechanism of nanoscale polycrystalline α-silicon carbide based on molecular dynamics simulation [J]. Chin. J. Mater. Res., 2020, 34: 628
|
10 |
施渊吉, 陈显冰, 吴修娟 等. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制 [J]. 材料研究学报, 2020, 34(8): 628
doi: 10.11901/1005.3093.2019.600
|
11 |
Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phy. Rev. Mat., 2020, 4: 103605
|
12 |
Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mat. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
|
13 |
Subin L, Aviral V, Jiseong I, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Com., 2020, 11: 2367
|
14 |
Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. App. Sur. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
|
15 |
Zhao L, Zhang J J, Janine P, et al. Depth-sensing ductile and brittle deformation in 3C-SiC under Berkovich nanoindentation[J], Mater. Des., 2021, 197: 109223
doi: 10.1016/j.matdes.2020.109223
|
16 |
Kondo S, Koyanagi, Hinoki T. Irradiation creep of 3C-SiC and microstructural understanding of the underlying mechanisms [J]. J Nucl. Mate., 2014, 448: 487
|
17 |
Zhao S, Flanagan R, Hahn E N, et al. Shock-induced amorphization in silicon carbide [J]. Acta Mater., 2018, 158: 206
doi: 10.1016/j.actamat.2018.07.047
|
18 |
Branicio P S, Kalia R K, Nakano A, et al. Nanoductility induced brittle fracture in s high performance ceramics [J]. Appl. Phy. Lett., 2010, 97:111903
doi: 10.1063/1.3478003
|
19 |
Chavoshi S Z, Luo X. Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures [J]. Mater. Sci. Eng. A, 2016, 654: 400
doi: 10.1016/j.msea.2015.11.100
|
20 |
Xiang H G, Li H T, Fu T. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
|
21 |
Chen J J, HU H J, Lai L F. Effect of adhesive contact failures on single crystal copper with different diamond radius [J]. Sur.Tech., 2018, 47(8): 170
|
21 |
陈晶晶, 胡洪钧, 赖联锋. 金刚石探针曲率半径对单晶铜表面粘附接触失效影响分析 [J]. 表面技术, 2018, 47(8): 170
|
22 |
Chen J J, Hu H J, Li B Z. Molecular dynamics simulation of failure in adhesive contact with single crystal copper [J]. Sur. Tech., 2017, 46(8): 195
|
22 |
陈晶晶, 胡洪钧, 李保震. 纳观单晶铜表面粘着接触失效的分子动力学模拟 [J]. 表面技术, 2017, 46(8): 195
|
23 |
Cui Y H, Li H T, Xiang H G, et al. Plastic deformation in zinc-blende AlN under nanoindentation: A molecular dynamics simulation [J]. Appl. Sur. Sci., 2019, 466: 757
doi: 10.1016/j.apsusc.2018.10.009
|
24 |
Stukowski. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modeling and Simulation in Mater. Sci. Eng., 2009, 18: 015012
|
25 |
Xiang H, Guo W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals [J]. Int J. Plasticity, 2020, 150: 103197
doi: 10.1016/j.ijplas.2021.103197
|
26 |
Xiang H G, Guo W L. A newly developed interatomic potential of Nb-Al-Ti ternary systems for high-temperature applications [J]. Acta Mech. Sin., 2022, 38: 121451
doi: 10.1007/s10409-022-09007-x
|
27 |
Goel S, Beake B, Chan C, et al. Twinning anisotropy of tantalum during nanoindentation [J]. Mater. Sci. Eng. A, 2015, 627:249
doi: 10.1016/j.msea.2014.12.075
|
28 |
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
doi: 10.1557/JMR.1992.1564
|
29 |
Fan X, Rui Z, Cao H, et al. Nanoindentation of γ-TiAl with different Crystal planes by molecular dynamics simulations [J]. Materials, 2019, 12: 770
doi: 10.3390/ma12050770
|
30 |
Belak J, Boercker D B, Stowers I F. Simulation of nanometer-scale deformation of metallic and ceramic surfaces [J]. MRS Bull., 1993, 18: 55
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|