Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 943-951    DOI: 10.11901/1005.3093.2023.126
  研究论文 本期目录 | 过刊浏览 |
单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析
王胜1, 周俏亭2, 占慧敏3, 陈晶晶4()
1.衢州职业技术学院机电工程学院 衢州 324000
2.南昌理工学院人文教育学院 南昌 330044
3.南昌理工学院计算机信息工程学院 南昌 330044
4.南昌理工学院机电工程学院 南昌 330044
Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation
WANG Sheng1, ZHOU Qiaoting2, ZHAN Huimin3, CHEN Jingjing4()
1.Department of Mechanical Engineering, Quzhou College of Technology, Quzhou 324000, China
2.School of Humanities Education, Nanchang Institute of Technology, Nanchang 330044, China
3.School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang 330044, China
4.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
引用本文:

王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
Sheng WANG, Qiaoting ZHOU, Huimin ZHAN, Jingjing CHEN. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. Chinese Journal of Materials Research, 2023, 37(12): 943-951.

全文: PDF(12615 KB)   HTML
摘要: 

基于分子动力学的Vashishta势函数研究了碳化硅纳米压痕受载诱导产生的位错环演变特征、相变转化数额和接触力学性能,分析了极端使役温度对其亚表层损伤行为和接触力学性能的影响。结果表明:碳化硅材料亚表层损伤主要以位错形核、位错堆积和位错滑移方式发生塑性变形,接触时的位错环历经位错形核、位错环生成增大、位错环繁衍增殖和位错环脆断等四个阶段。较高的使役温度,使碳化硅材料的最大承载性、硬度、杨氏模量和接触刚度曲线呈类抛物线趋势下降。其主要原因是,温度越高碳化硅晶格点阵越容易摆脱原子键能的束缚而产生晶格点阵缺陷,位错的产生导致材料亚表层发生应力集中,最终使碳化硅材料接触时的力学性能大大降低。此外,亚表层应力集中也使碳化硅材料内相变结构由立方碳化硅向闪锌矿碳化硅类型转变。随着温度的升高立方碳化硅和闪锌矿碳化硅的相变结构随之增多。另外,半导体器件中的碳化硅受载时发生的相变对使役温度的依赖极为显著。温度升高引起碳化硅晶格相变和表面随机粗糙斑点的产生,是产生接触黏着的主要原因。

关键词 无机非金属材料亚表层损伤单晶碳化硅接触力学性能位错环    
Abstract

It is helpful to understand the microstructure evolution characteristics and mechanical properties of monocrystalline SiC semiconductor devices during contact from the perspective of atomic scale to understand the microscopic mechanism of subsurface damage behavior and phase transformation. Based on the Vashishta potential function of molecular dynamics, the microscopic evolution characteristics of the nano-indentation induced dislocation rings, the amount of phase transformation and the contact mechanical properties of the corresponding monocrystalline SiC surface were studied, and the effect of extreme service temperature on the subsurface damage behavior and the contact mechanical properties were analyzed. The results show that the plastic deformation of SiC subsurface damage is mainly caused by dislocation nucleation, dislocation accumulation and dislocation slip, whilst the dislocation ring goes through four evolution stages during contact, i.e., dislocation nucleation, dislocation ring growth, dislocation ring reproduction and dislocation ring brittle break. Besides, with the increasing temperature, the maximum bearing capacity, hardness, Young's modulus and contact stiffness curves of silicon carbide materials show a parabolic trend of decline. The main reason is that the higher the temperature is, the SiC lattice is easy to get rid of the bondage of atomic bond energy, resulting in lattice defects, and easy to breed dislocation, which result in the enrichment of stress concentration on subsurface of materials at lastly. As a result, the mechanical properties of SiC materials are greatly reduced while being contacted. In addition, the subsurface stress concentration is also the fundamental reason for the phase transformation from cubic to sphalerite for SiC materials. With the increase of temperature, the amount of phase transformation increases. The dynamic contact plastic deformation and micro-structure evolution of SiC in semiconductor devices under loading, and the phase transformation are significantly dependent on the operating temperature. The rising temperature related change of crystal lattice and the generation of random rough spots on the surface are the main causes of contact adhesion. This study may provide a deeper understand on contact mechanical properties and sub-surface damage behavior at extreme service temperatures, and will also enrich the understanding of the contact failure mechanism of nano silicon carbide.

Key wordsinorganic non-metallic materials    subsurface damage    single crystal SiC    contact mechanical performance    dislocation ring
收稿日期: 2023-02-13     
ZTFLH:  TH117.1  
基金资助:浙江省基础公益研究计划(LGC21E050002);南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心,江西省教育厅科学技术研究项目(GJJ2202705);南昌理工学院校级课题(NLZK-22-07);南昌理工学院校级课题(NLZK-22-01)
通讯作者: 陈晶晶,副教授,chenjingjingfzu@126.com,研究方向为微机电系统界面接触与摩擦行为及调控
Corresponding author: CHEN Jingjing, Tel: 15750843783, E-mail: chenjingjingfzu@126.com
作者简介: 王胜,男,1985年生,高级工程师
图1  纳米压痕接触中单晶碳化硅原子尺度物理模型与MD模拟示意图
图2  低温(5K)下单晶碳化硅接触中的载荷与位移曲线关系
图3  低温(5K)下单晶碳化硅纳米压痕接触中亚表层损伤的微结构演化特征
图4  低温(5 K)下单晶碳化硅螺杆位错脆断的演化进程与温度对碳化硅的载荷与位移曲线的影响
图5  极端使役温度对单晶碳化硅纳米压痕接触中表面形貌的影响
图6  单晶碳化硅纳米压痕时材料力学性能随使役温度的变化
图7  单晶碳化硅基底亚表层损伤结构类型转化随温度的变化
LoadingTemperature / K
Variable529880013005298800130052988001300
Depth / nmOther structureCD1st+CD2nd structureHD+HD1st+HD2nd structure
0000000000000
2528885107212031808918367188341979500192464
2.42080162714241336191401959820189210940576111823
34096299627932526218562132122381232497044811183454
492236289499044602526326353273562874215551026746165
4.4117927854553957352688628221291243035417663735507928
表1  单晶碳化硅亚表层损伤的相变结构类型转化数目随使役温度的变化
图8  单晶碳化硅纳米压痕受载诱导的von Mises stress随使役温度的变化
1 Woodilla D, Buonomo M, Bar-On I, et al. Elevated-temperature behavior of high-strength silicon carbide [J]. J. Am. Ceram. Soc., 1993, 76: 249
doi: 10.1111/jace.1993.76.issue-1
2 Talwar D N, Sherbondy J C. Thermal expansion coeffificient of 3C-SiC [J]. Appl. Phys. Lett., 1995, 67: 3301
doi: 10.1063/1.115227
3 Demenet J L, Amer M, Tromas C. Dislocations in 4H-and 3C-SiC single crystals in the brittle regime [J]. Phys. Status.Solidi-C, 2013, 10: 64
4 Miranda A, Cuevas J L, Ramos A E, et al. Quantum confinement effects on electronic properties of hydrogenated 3C-SiC nanowires [J]. Microelectronics, 2009, 40: 796
doi: 10.1016/j.mejo.2008.11.034
5 Wang G B, Lei Y Z. Concerning and developing tribology, promoting sustainable economic development [J]. Prog. Nat. Sci., 2005, 15: 571
6 Department of Engineering and Materials Science, National Natural Science Foundation of China. Mechanical Engineering Development Strategy Report (2011-2020) [R] Beijing: Science Press, 2010
6 国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2011-2020) [R]. 北京: 科学出版社, 2010
7 Mylvaganam K, Zhang L C, Eyben P, et al. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification [J]. Nanotechnology, 2009, 20: 305705
doi: 10.1088/0957-4484/20/30/305705
8 Du X C. Molecular dynamics investigations of temperature effects on the nano-indentation/scratching response of typical single crystal materials [D]. Changchun: Jilin University, 2016
8 杜宪成. 温度对典型单晶材料纳米压痕/划痕响应影响的分子动力学解析 [D]. 长春: 吉林大学, 2016
9 Zhang Q, Chen J J, Song M M, et al. Original analysis of adhesion produced for semiconductor silicon device based on atomic simulation [J]. Sur. Tech., 2021, 50: 269
10 Shi Y J, Chen X B, Wu X J, et al. Deformation mechanism of nanoscale polycrystalline α-silicon carbide based on molecular dynamics simulation [J]. Chin. J. Mater. Res., 2020, 34: 628
10 施渊吉, 陈显冰, 吴修娟 等. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制 [J]. 材料研究学报, 2020, 34(8): 628
doi: 10.11901/1005.3093.2019.600
11 Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phy. Rev. Mat., 2020, 4: 103605
12 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mat. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
13 Subin L, Aviral V, Jiseong I, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Com., 2020, 11: 2367
14 Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. App. Sur. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
15 Zhao L, Zhang J J, Janine P, et al. Depth-sensing ductile and brittle deformation in 3C-SiC under Berkovich nanoindentation[J], Mater. Des., 2021, 197: 109223
doi: 10.1016/j.matdes.2020.109223
16 Kondo S, Koyanagi, Hinoki T. Irradiation creep of 3C-SiC and microstructural understanding of the underlying mechanisms [J]. J Nucl. Mate., 2014, 448: 487
17 Zhao S, Flanagan R, Hahn E N, et al. Shock-induced amorphization in silicon carbide [J]. Acta Mater., 2018, 158: 206
doi: 10.1016/j.actamat.2018.07.047
18 Branicio P S, Kalia R K, Nakano A, et al. Nanoductility induced brittle fracture in s high performance ceramics [J]. Appl. Phy. Lett., 2010, 97:111903
doi: 10.1063/1.3478003
19 Chavoshi S Z, Luo X. Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures [J]. Mater. Sci. Eng. A, 2016, 654: 400
doi: 10.1016/j.msea.2015.11.100
20 Xiang H G, Li H T, Fu T. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
21 Chen J J, HU H J, Lai L F. Effect of adhesive contact failures on single crystal copper with different diamond radius [J]. Sur.Tech., 2018, 47(8): 170
21 陈晶晶, 胡洪钧, 赖联锋. 金刚石探针曲率半径对单晶铜表面粘附接触失效影响分析 [J]. 表面技术, 2018, 47(8): 170
22 Chen J J, Hu H J, Li B Z. Molecular dynamics simulation of failure in adhesive contact with single crystal copper [J]. Sur. Tech., 2017, 46(8): 195
22 陈晶晶, 胡洪钧, 李保震. 纳观单晶铜表面粘着接触失效的分子动力学模拟 [J]. 表面技术, 2017, 46(8): 195
23 Cui Y H, Li H T, Xiang H G, et al. Plastic deformation in zinc-blende AlN under nanoindentation: A molecular dynamics simulation [J]. Appl. Sur. Sci., 2019, 466: 757
doi: 10.1016/j.apsusc.2018.10.009
24 Stukowski. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modeling and Simulation in Mater. Sci. Eng., 2009, 18: 015012
25 Xiang H, Guo W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals [J]. Int J. Plasticity, 2020, 150: 103197
doi: 10.1016/j.ijplas.2021.103197
26 Xiang H G, Guo W L. A newly developed interatomic potential of Nb-Al-Ti ternary systems for high-temperature applications [J]. Acta Mech. Sin., 2022, 38: 121451
doi: 10.1007/s10409-022-09007-x
27 Goel S, Beake B, Chan C, et al. Twinning anisotropy of tantalum during nanoindentation [J]. Mater. Sci. Eng. A, 2015, 627:249
doi: 10.1016/j.msea.2014.12.075
28 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
doi: 10.1557/JMR.1992.1564
29 Fan X, Rui Z, Cao H, et al. Nanoindentation of γ-TiAl with different Crystal planes by molecular dynamics simulations [J]. Materials, 2019, 12: 770
doi: 10.3390/ma12050770
30 Belak J, Boercker D B, Stowers I F. Simulation of nanometer-scale deformation of metallic and ceramic surfaces [J]. MRS Bull., 1993, 18: 55
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[10] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.