Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 855-861    DOI: 10.11901/1005.3093.2023.111
  研究论文 本期目录 | 过刊浏览 |
纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能
王月1, 付博研1, 陈双龙1, 邹兵林2, 王春杰1()
1.渤海大学物理科学与技术学院 锦州 121013
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室 长春 130022
Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings
WANG Yue1, FU Boyan1, CHEN Shuanglong1, ZOU Binglin2, WANG Chunjie1()
1.College of Physical Science and Technology, Bohai University, Jinzhou 121013, China
2.State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
引用本文:

王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
Yue WANG, Boyan FU, Shuanglong CHEN, Binglin ZOU, Chunjie WANG. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. Chinese Journal of Materials Research, 2023, 37(11): 855-861.

全文: PDF(4119 KB)   HTML
摘要: 

用水热合成法制备纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd),表征其晶体结构、形貌、晶格参数、平均粒径尺寸和比表面积并研究了相关的热物性能及其机理。对XRD谱和Raman谱的分析表明,La2(Zr0.7Ce0.3)2O7、Nd2(Zr0.7Ce0.3)2O7和Sm2(Zr0.7Ce0.3)2O7均为烧绿石结构,而Gd2(Zr0.7Ce0.3)2O7为萤石结构。结合SEM观察、体积收缩以及相对密度,分析了块材的抗烧结性能。系统对比研究了晶体生长行为、热膨胀系数和热导率等热物性能。结果表明:随着Ln离子半径的减小(La>Nd>Sm>Gd)Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)纳米材料的晶体生长活化能和热膨胀系数均呈增大的趋势,而热导率则呈降低的趋势。

关键词 无机非金属材料热障涂层材料热物性能晶体生长活化能    
Abstract

Thermal barrier coatings are widely used in the protection of engine turbine blade, in this paper, Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) nanomaterials for the applications of thermal barrier coatings were synthesized by hydrothermal method, the crystallographic structures, morphologies and related thermophysical properties of powders and their bulk materials were comparatively assessed via various techniques. The analysis results of XRD and Raman spectra indicate that La2(Zr0.7Ce0.3)2O7, Nd2(Zr0.7Ce0.3)2O7 and Sm2(Zr0.7Ce0.3)2O7 are pyrochlore structures, while Gd2(Zr0.7Ce0.3)2O7 belongs to fluorite type. The lattice parameters, average particle sizes and specific surface areas were also characterized. The volume shrinkage / relative density, the sintering-resistance properties of the four bulk materials were evaluated by SEM observation. Additionally, their thermophysical properties (such as the activation energy of crystal growth, thermal expansion coefficient, and thermal conductivity) were investigated in detail. As the ionic radii of Ln decreasing, the activation energy of crystal growth and thermal expansion coefficient of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) increased, however the thermal conductivity is just the opposite.

Key wordsinorganic non-metallic materials    thermal barrier coating materials    thermophysical property    activation energy of crystal growth
收稿日期: 2023-02-23     
ZTFLH:  TG174.45  
基金资助:国家自然科学基金(12004050);辽宁省教育厅项目(LJKMZ20221493);辽宁省教育厅项目(JYTMS20231624)
通讯作者: 王春杰,教授,cjwang@foxmail.com,研究方向为纳米热障涂层材料的制备及性能
Corresponding author: WANG Chunjie, Tel: (0416)3400145, E-mail: cjwang@foxmail.com
作者简介: 王月,女,1982年生,副教授
图1  Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的TG-DSC曲线
图2  Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)在不同温度下的XRD谱
SamplesCrystallite size / nmLattice parameter / nmSBET/ m2·g-1
LZC5.721.082107.72
NZC7.961.069101.76
SZC9.431.06394.64
GZC12.030.509886.42
表1  Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)样品的初始晶粒尺寸、晶格参数以及比表面积
图3  Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)在1450℃热处理后的拉曼光谱
图4  Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)在不同温度下的平均粒径尺寸
图5  Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)块材在1450℃热处理后的SEM照片
SamplesVolume shrinkage / %Relative density / %
LZC16.6681.56
NZC22.6883.47
SZC25.0785.02
GZC27.4886.29
表2  Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)块材在1450℃热处理后的体积收缩和相对密度数值
图6  Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd)样品的热膨胀系数和热导率及其随温度的变化
1 Sankar V, Ramkumar P, Sebastian D, et al. Optimized thermal barrier coating for gas turbine blades [J]. Mater. Today., 2019, 11: 912
2 Jonnoalagadda K P, Eriksson R, Li X H, et al. Thermal barrier coatings: life model development and validation [J]. Surf. Coating. Technol., 2019, 362: 293
doi: 10.1016/j.surfcoat.2019.01.117
3 Li R Y, Xie M, Zhang Y H, et al. Physical properties of Er2O3 doped Gd2(Zr0.8Ti0.2)2O7 ceramic materials [J]. Chin. J. Mater. Res., 2022, 36: 49
3 李瑞一, 谢 敏, 张永和 等. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能 [J]. 材料研究学报, 2022, 36: 49
doi: 10.11901/1005.3093.2021.230
4 Li Y, Chen X L, Sun C, et al. Preparation and performance of LnMgAl11O19(Ln=La, Nd) powders for thermal barrier coating [J]. Chin. J. Mater. Res., 2019, 33: 409
4 李 莹, 陈小龙, 孙 超 等. 热障涂层陶瓷层材料LnMgAl11O19 (Ln=La, Nd)粉体的性能 [J]. 材料研究学报, 2019, 33: 409
5 Wang Y, Shao B, Fu B, et al. Comparative researches on the thermophysical properties of nano-sized La2(Zr0.7Ce0.3)2O7 synthesized by different routes [J]. Nanomaterials., 2022, 12: 2487
doi: 10.3390/nano12142487
6 Xu Z, He L, Mu R, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7 coatings [J]. J. Eur. Ceram. Soc., 2009, 29: 1771
doi: 10.1016/j.jeurceramsoc.2008.10.005
7 Zhang H, Li Z, Xu Q, et al. Preparation and thermophysical properties of Sm2(Zr0.7Ce0.3)2O7 ceramic [J]. Adv. Eng. Mater., 2008, 10: 139
doi: 10.1002/adem.v10:1/2
8 Wang C, Wang Y, Fan X. Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol-gel process [J]. Surf. Coating. Technol., 2012, 212: 88
doi: 10.1016/j.surfcoat.2012.09.026
9 Wang C, Wang Y. Thermophysical properties of La2(Zr0.7Ce0.3)2O7 prepared by hydrothermal synthesis for nano-sized thermal barrier coatings [J]. Ceram. Int., 2015, 41: 4601
doi: 10.1016/j.ceramint.2014.12.003
10 Zhao F A, Xiao H Y, Bai X M, et al. Effects of doping Yb3+, La3+, Ti4+, Hf4+, Ce4+ cations on the mechanical properties, thermal conductivity, and electronic structures of Gd2Zr2O7 [J]. J. Alloy. Comp., 2019, 776: 306
doi: 10.1016/j.jallcom.2018.10.240
11 Duarte W, Vardelle M, Rossignol S, et al. Effect of the precursor nature and preparation mode on the coarsening of La2Zr2O7 compounds [J]. Ceram. Int., 2016, 42: 1197
doi: 10.1016/j.ceramint.2015.09.051
12 Zhang P, Navrotsky A, Guo B, et al. Energetics of cubic and monoclinic yttrium oxide polymorphs: phase transitions, surface enthalpies, and stability at the nanoscale [J]. J. Phys. Chem. C., 2008, 112: 932
doi: 10.1021/jp7102337
13 Kaliyaperumal C, Sankarakumar A, Palanisamy J, et al. Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7 [J]. Mater. Lett., 2018, 228: 493
doi: 10.1016/j.matlet.2018.06.087
14 Wang C, Wang Y, Cheng Y, et al. Effects of surfactants on the structure and crystal growth behavior of Sm2Zr2O7 nanocrystalline [J]. Powder Technol., 2012, 225: 130
doi: 10.1016/j.powtec.2012.03.050
15 Wang C, Wang Y, Cheng Y, et al. Preparation and thermophysical properties of nano-sized Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) ceramics with pyrochlore structure [J]. J. Mater. Sci., 2012, 47: 4392
doi: 10.1007/s10853-012-6293-6
16 Qu Z, Wan C, Pan W, et al. Thermal expansion and defect chemistry of MgO doped Sm2Zr2O7 [J]. Chem. Mater., 2007, 19: 4913
doi: 10.1021/cm071615z
17 Tong Y, Lu L, Yang X, et al. Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method [J]. Solid. State. Sci., 2008, 10: 1379
doi: 10.1016/j.solidstatesciences.2008.01.027
18 Kutty K V G, Rajagopalan S, Mathews C K, et al. Thermal expansion behavior of some rare earth oxide pyrochlores [J]. Mater. Res. Bull., 1994, 29: 759
doi: 10.1016/0025-5408(94)90201-1
19 Wang C, Wang Y, Zhang A, et al. The influence of ionic radii on the grain growth and sintering-resistance of Ln2Ce2O7 (Ln=La, Nd, Sm, Gd) [J]. J. Mater. Sci., 2013, 48: 8133
doi: 10.1007/s10853-013-7625-x
20 Li J G, Wang Y, Ikegami T, et al. Densification below 1000℃ and grain growth behaviors of yttria doped ceria ceramics [J]. Solid State Ionics., 2008, 179: 951
doi: 10.1016/j.ssi.2008.01.053
21 Mazaheri M, Simchi A, Dourandish M, et al. Master sintering curves of a nanoscale 3Y-TZP powder compacts [J]. Ceram. Int., 2009, 35: 547
doi: 10.1016/j.ceramint.2008.01.008
22 Wang C, Wang Y. A study of phase evolution and crystal growth for nano-sized monoclinic Y4Al2O9 as a novel thermal barrier coatings [J]. Ceram. Int., 2019, 45: 19679
doi: 10.1016/j.ceramint.2019.06.217
23 Zhang H, Xu Q, Wang F, et al. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings [J]. J. Alloy. Comp., 2009, 475: 624
doi: 10.1016/j.jallcom.2008.07.068
24 Dean J. Lang's Handbook of Chemistry [M]. 13th Ed., New York: McGraw-Hill Book Co, 1985: 37
25 Wan C, Qu Z, Du A, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Mater., 2009, 57: 4782
doi: 10.1016/j.actamat.2009.06.040
26 Mazaheri M, Simchi A, Dourandish M, et al. Master sintering curves of a nanoscale 3Y-TZP powder compacts [J]. Ceram Inter., 2009, 35: 547
doi: 10.1016/j.ceramint.2008.01.008
27 Wan C, Qu Z, Du A, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Mater., 2009, 57: 4782
doi: 10.1016/j.actamat.2009.06.040
28 Wan C, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (La x Gd1- x )2Zr2O7: experiment and theoretical model [J]. Phys. Rev. B., 2006, 74: 144109-1
doi: 10.1103/PhysRevB.74.144109
29 Berman R, Sciama D W. Wilkinson D H,et al. Thermal Conduction in Solids [M]. Oxford: Clarendon Press, 1976: 66
30 Zhang H, Xu Q, Wang F, et al. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings [J]. J. Alloy. Comp., 2009, 475: 624
doi: 10.1016/j.jallcom.2008.07.068
31 Zhou H, Yi D, Yu Z, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings [J]. J. Alloy. Compd., 2007, 438: 217
doi: 10.1016/j.jallcom.2006.08.005
32 Wang C, Hu Z Q, Wu S J, et al. Preparation and properties of La2O3 doped BST/Mg2TiO4 microwave composite ceramics [J]. Chin. J. Mater. Res., 2011, 25: 109
32 王 成, 胡作启, 伍双杰 等. La2O3掺杂BST/Mg2TiO4微波复核陶瓷的制备和性能 [J]. 材料研究学报, 2011, 25: 109
33 Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials [M]. Beijing: Tsinghua Univiersity Press, 1992: 144
33 关振铎, 张中太, 焦金生. 无机材料物理性能 [M]. 北京: 清华大学出版社, 1992: 144
34 Cahill D G, Watson S K, Pohl R O, et al. Lower limit to the thermal conductivity of disordered crystals [J]. Phys. Rev. B., 1992, 46: 6131-1
pmid: 10002297
35 Clarke D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings [J]. Surf. Coating. Technol., 2003, 163: 67
36 Schelling P K, Phillpot S R, Grimes R W, et al. Optimum pyrochlore compositions for low thermal conductivity by simulation [J]. Philos. Mag. Lett., 2004, 84: 127
doi: 10.1080/09500830310001646699
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[9] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.