Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 140-146    DOI: 10.11901/1005.3093.2021.258
  研究论文 本期目录 | 过刊浏览 |
Mn掺杂Co-Al金属氢氧化物的制备及其全解水电化学性能
嵇锦鹏1, 李国辉1,2(), 耿凤霞1
1.苏州大学能源学院 苏州 2151232
2.遵义师范学院化学化工学院 遵义 563006
Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting
JI Jinpeng1, LI Guohui1,2(), GENG Fengxia1
1.College of Energy, Soochow University, Suzhou 215123, China
2.School of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China
引用本文:

嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al金属氢氧化物的制备及其全解水电化学性能[J]. 材料研究学报, 2022, 36(2): 140-146.
Jinpeng JI, Guohui LI, Fengxia GENG. Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting[J]. Chinese Journal of Materials Research, 2022, 36(2): 140-146.

全文: PDF(7453 KB)   HTML
摘要: 

以Co基氢氧化物为基础用异质元素掺杂方式引入Mn并与Co协同,制备出Mn掺杂Co-Al层状双金属氢氧化物 (Mn-CoAl LDH)。在1 mol/L的KOH碱性电解质中,电流密度达到10 mA·cm-2时Mn-CoAl LDH的全解水电势为1.66 V,其性能远优于Co-Al层状双金属氢氧化物(CoAl LDH)、Ni2/3S1/3 /Nickel Foam (1.76 V)和已经商业化的Pt/C (1.75 V)。这表明,Mn-CoAl LDH催化剂在碱性环境下具有较高的析氢和析氧活性,是一种低成本高性能的双功能电催化剂。

关键词 无机非金属材料催化剂Mn掺杂析氢析氧    
Abstract

The layered double-metal Co-Al hydroxide (CoAl LDH) was first prepared via reflux precipitation method with CoCl2·6H2O and AlCl3·6H2O as raw material, and then the heteroelement Mn doped layered double-metal Co-Al hydroxide (Mn-CoAl LDH) was acquired by the same means. When the current density reaches 10 mA·cm-2, the fully hydrolyzable potential of Mn-CoAl LDH in 1 mol/L KOH alkaline electrolyte is 1.66 V, its performance is much better than that of undoped Co-Al layered bimetallic hydroxide (CoAl LDH), Ni2/3S1/3 /Nickel Foam (1.76 V) and commercial Pt/C (1.75 V). These results show that Mn-CoAl LDH catalyst has high activity of hydrogen evolution and oxygen evolution in alkaline environment, and is a kind of low cost and high performance bifunctional electric catalyst

Key wordsinorganic non-metallic materials    catalyst    Mn doping    hydrogen production    oxygen evolution
收稿日期: 2021-04-21     
ZTFLH:  TQ116.2  
基金资助:国家自然科学基金(51772201);贵州省材料电化学特色重点实验室项目(黔教合KY字[2018]004);博士基金(遵师BS[2020]13)
作者简介: 李国辉,副教授,lgh101812@163.com,研究方向为功能性层状材料和能源材料
嵇锦鹏,男,1996年,硕士生
图1  CoAl LDH和Mn-CoAl LDH的XRD谱
图2  CoAl LDH的扫描电镜照片
图3  Mn-CoAl LDH的扫描电镜照片
SampleMnCoAl
CoAl LDH020.06%11.06%
Mn-CoAl LDH4.54%14.77%11.65%
表1  样品金属成分的原子比
图4  Mn-CoAl LDH的SEM照片和相应的EDX元素分布
图5  在1 mol/L KOH水溶液中Mn-CoAl LDH等的析氢性能
图6  在1 mol/L KOH水溶液中Mn-CoAl LDH等的析氧性能
图7  扫速不同(2~10 mV·s -1)的循环伏安曲线
图8  Mn-CoAl LDH催化剂的全解水性能
Catalyst

Voltage/V

@10 mA·cm-2

ElectrolyteElectrode

Mn-CoAl LDH

(This work)

1.661 mol/L KOHNi Form
CoAl LDH2.051 mol/L KOHNi Form
Ni2/3Fe1/3 /NF [4]1.761 mol/L KOHNi Form
NiFe LDH/NF[31]1.71 mol/L KOHNi Form
NiFe/NiCo2O4[32]1.671 mol/L KOHNi Form
NiCo2O4 nanowires Array[33]>1.91 mol/L KOHCarbon cloth
表2  与一些非贵金属全解水催化活性的比较
1 Mallouk T E . Divide and conquer [J]. Nat. Chem. 2013, 5: 362
2 Zou X , Zhang Y . Noble metal-free hydrogen evolution catalysts for water splitting [J]. Chem. Soc. Rev. 2015, 44: 5148
3 Gasteiger H A , Marković N M . Just a dream—or future reality [J]. Science. 2009, 324: 48
4 Ma W , Ma R , Wang C X , et al . A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water [J]. ACS Nano. 2015, 9(2): 1977
5 Duan J , Chen S , Jaroniec M , et al . Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution [J]. ACS Nano. 2015, 9(1): 931
6 Guo Y , Tang J , Henaie J , et al . Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen [J]. Mater. Horiz. 2017, 4: 1171
7 Pei Z , Zhu M S , Huang Y , et al . Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnO x /TiO2 nanotube composite electrodes [J]. Nano. Energy 2016, 20: 254
8 Feng L L , Yu G , Wu Y , et al . High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting [J]. J. Am. Chem. Soc. 2015, 137(44): 14023
9 Long X , Li G , Wang Z , et al . Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media [J]. J. Am. Chem. Soc. 2015, 137(37): 11900
10 Song F , Hu X . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis [J]. Nat. Commun. 2014, 5: 4477
11 Lu X , Zhao C . Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities [J]. Nat. Commun. 2015, 6: 6616
12 Yu J , Lv C , Zhao L , et al . Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting [J]. Adv. Mater. Interfaces 2018, 5(7): 1701396
13 Song G , Wang Z , Sun, J, et al . Electrochem. Commun. ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting [J]. 2019, 105: 106487
14 Wang Z , Liu H , Ge R , et al . Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting [J]. ACS Catal. 2018, 8(3): 2236
15 Wang Z , Xu W , Chen X , et al . Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis [J]. Adv. Funct. Mater. 2019, 29(33): 1902875
16 Stevevs M B , Trang C D M , Enamn L J , et al . Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity [J]. J. Am. Chem. Soc. 2017, 139(33): 11361
17 Liang H , Gandi A N , Xia C , et al . Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications [J]. ACS Energy Lett. 2017, 2(5): 1035
18 Jia Y , Zhang L , Gao G , et al . A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting [J]. Adv. Mater. 2017, 29(17): 1700017
19 Zaffran J , Stevens M B , Trang C D M , et al . Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction [J]. Chem. Mater. 2017, 29(11): 4761
20 Shao Q , Wang Y , Yang S Z , et al . Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis [J]. ACS Nano 2018, 12(11): 11625
21 Gao X , Zhang H , Li Q , et al . Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting [J]. Angew. Chem., Int. Ed. 2016, 55(21): 6290
22 Trotochaud L , Young S L , Ranney J K , et al . Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation [J]. J. Am. Chem. Soc. 2014, 136(18): 6744
23 Speck F D , Dettelbach K E , Sherbo P S , et al . On the electrolytic stability of iron-nickel oxides [J]. Chem 2017, 2(4): 590
24 Wang Y , Sheng M Q , Weng W P . Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solutions [J]. Chinese Journal of Materials Research, 2017, 31(10): 774
24 王 玉, 盛敏奇, 翁文凭 . 电沉积非晶态Co-W合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31(10): 774
25 Evans D G , Slade R C T . Structural aspects of layered double hydroxides [J]. Structure Bonding, 2006, 119: 1
26 Liu Z P , Ma R Z , Osada M , et al . Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies [J]. J. Am. Chem. Soc. 2006, 128(14): 4872
27 Adachi-pagano M , Forano C , Besse J . Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. Mater Chem, 2003, 13(8): 1988
28 Ambrogi V , Fardella G , Grandolini G , et al . Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs [J]. Pharmacy Sci, 2003, 92(7): 1407
29 Juan J , Bravo-Suarez J J , Oyama S T , et al . intercalation of decamolybdodicobaltate (III) anion in layered double hydroxides [J]. Chem Mater, 2004, 16(7): 1214
30 Duan B B , Sui M H , Sheng L . Synthesis and characterization of nano Co-Mn-Al-CO3 layered double hydroxides [J]. Acta Phys.-Chim. Sin. 2012, 4(26): 56
31 Mayer M T , Luo J S , Schreier M , et al . Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant cataly [J]. Science 2014, 345: 1593
32 Zeng S , Wang Z Q , Liu W H , et al . Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity [J]. ACS Appl. Mater. Interfaces 2017, 9(2): 1488
33 Lu Q , Liu D N , Luo Y L , et al . NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity [J]. Nanoscale 2015, 7: 15122
34 Zhang Z L , Wang S Q , Xu B L , et al . Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chinese Journal of Materials Research, 2021, 35(3): 193
34 张泽灵, 王世奇, 徐邦利 等 . FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.