Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 332-340    DOI: 10.11901/1005.3093.2022.135
  研究论文 本期目录 | 过刊浏览 |
MnNiCoCrFe多孔高熵合金的电催化析氧性能
李海龙1,2,3, 牟娟1, 王媛媛2,3, 葛绍璠2,3, 刘春明1, 张海峰1,2,3, 朱正旺2,3()
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material
LI Hailong1,2,3, MU Juan1, WANG Yuanyuan2,3, GE Shaofan2,3, LIU Chunming1, ZHANG Haifeng1,2,3, ZHU Zhengwang2,3()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
Hailong LI, Juan MU, Yuanyuan WANG, Shaofan GE, Chunming LIU, Haifeng ZHANG, Zhengwang ZHU. Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material[J]. Chinese Journal of Materials Research, 2023, 37(5): 332-340.

全文: PDF(10395 KB)   HTML
摘要: 

用化学腐蚀方法制备出3D多孔自支撑型Mn50Fe12.5Co12.5Ni12.5Cr12.5高熵合金。电化学测试结果表明,将这种高熵合金放入1 mol/L KOH的碱性溶液中,电流密度为10 mA·cm-2时过电位为281 mV,Tafel斜率为63 mV/dec,表明其电催化性能优于商业RuO2的性能。在电流密度为50 mA·cm-2的条件下连续工作50 h,工作电压没有明显的升高,表明这种富锰高熵电催化电极材料具有优异的析氧稳定性。电化学阻抗谱表明,这种自支撑型结构的块体高熵合金催化剂具有出色的导电性,与负载型催化剂相比其电子转移能力显著提高。

关键词 金属材料电催化剂高熵合金析氧反应多孔结构    
Abstract

A novel three-dimensional porous self-supporting electrode material for electrochemical catalytic oxygen evolution were prepared by chemical etching method from a bulk high-entropy alloy Mn50Fe12.5Co12.5Ni12.5Cr12.5. The electrochemical test results show that the overpotential of the prepared electrode material is only 281 mV at the current of 10 mA·cm-2 and the Tafel slope is 63 mV/dec in an alkaline solution of 1 mol/L KOH, which is better than that of commercial RuO2. At the same time, the working voltage does not increase significantly after continuous operation for 50 h at the current density of 50 mA·cm-2, which reflects the excellent stability during electrocatalytic oxygen evolution process of the Mn-rich high-entropy porous alloy as electrocatalytic electrode material. The Nyquist plots show that the free-standing structure of the bulk HEA catalyst has outstanding electron transfer ability compared with the ordinary supported catalyst.

Key wordsmetallic materials    electrocatalysts    high-entropy alloy    oxygen evolution    porous structure
收稿日期: 2022-03-12     
ZTFLH:  TB31  
基金资助:国家自然科学基金(52074257)
作者简介: 李海龙,男,1992年生,博士生
图1  M50高熵合金和M50A高熵催化剂的X射线衍射谱
图2  M50合金表面的SEM照片和金相腐蚀后的EDS面扫描图
图3  M50枝晶和枝晶间成分的点扫描能谱图
MnNiCoCrFe
Dendritic regions46.4310.0313.5014.6015.44
Interdendrite regions54.3315.3011.1410.338.90
表1  M50枝晶和枝晶间各元素含量的分布
图4  M50A催化剂表面的SEM照片和EDS能谱
图5  M50、M50A 和RuO2的电催化析氧性能
图6  M50合金不同扫描速率的循环伏安曲线、M50A催化剂不同扫描速率的循环伏安曲线以及M50和M50A的Cdl图
图7  M50、M50A和RuO2的阻抗谱(插图分别为拟合等效电路图和局部放大图)、M50催化剂多级计时电位响应以及在恒电流密度10和50 mA·cm-2条件下M50A的稳定性
CatalystsRs / Ω·cm2Cf / mF·cm2Rf / Ω·cm2Cdl / mF·cm-2Rct / Ω·cm2χ2
M502.4570.39140.78181.0553.6963.68×10-4
RuO22.4280.056946.9190.0342814.745.87×10-4
M50A2.2252.9370.511914.170.65571.93×10-4
表2  不同催化剂EET的拟合参数
图8  M50A电极OER反应后表面的高分辨XPS谱
1 Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in china: strategies and countermeasures [J]. Resour. Conserv. Recy., 2022, 176: 105959
doi: 10.1016/j.resconrec.2021.105959
2 Mchugh P J, Stergiou A D, Symes M D. Decoupled electrochemical water splitting: from fundamentals to applications [J]. Adv. Energy Mater., 2020, 10(44): 2002453
doi: 10.1002/aenm.v10.44
3 Sivanantham A, Lee H, Hwang S W, et al. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH [J]. J. Mater. Chem. A, 2021, 9(31): 16841
doi: 10.1039/D1TA02621F
4 Ji J P, Li G H, Geng F X, Mn-doped Co-Al LDHs and its potential use for overall water splitting [J]. Chin. J. Mater. Res., 2022, 36: 140
4 嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al金属氢氧化物的制备及其全解水电化学性能 [J]. 材料研究学报, 2022, 36: 140
doi: 10.11901/1005.3093.2021.258
5 Yu Z Y, Duan Y, Feng X Y, et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects [J]. Adv. Mater., 2021, 33(31): 2007100
doi: 10.1002/adma.v33.31
6 Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. J. Electrochem. Soc., 2019, 166(8): F487
doi: 10.1149/2.0421908jes
7 Gao R, Zhu J, Yan D P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review [J]. Nanoscale, 2021, 13(32): 13593
doi: 10.1039/d1nr03409j pmid: 34477633
8 Wang M, Zhang L, He Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Chem. A, 2021, 9(9): 5320
doi: 10.1039/D0TA12152E
9 Wang C, Shang H Y, Li J, et al. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis [J]. Chem. Eng. J., 2021, 420
10 Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials [J]. ACS Catal., 2012, 2(8): 1765
doi: 10.1021/cs3003098
11 Tian L, Li Z, Xu X N, et al. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis [J]. J. Mater. Chem. A, 2021, 9(23): 13459
doi: 10.1039/D1TA01108A
12 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
13 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
14 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4(8): 515
doi: 10.1038/s41578-019-0121-4
15 He Q F, Tang P H, Chen H A, et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys [J]. Acta Mater., 2021, 216
16 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
17 Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35 (3): 193
17 张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35: 193
18 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
doi: 10.1016/j.jpowsour.2019.05.030
19 Katiyar N K, Biswas K, Yeh J W, et al. A perspective on the catalysis using the high entropy alloys [J]. Nano Energy, 2021, 88: 106261
doi: 10.1016/j.nanoen.2021.106261
20 Xie P F, Yao Y G, Huang Z N, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nat. Commun., 2019, 10: 4011
doi: 10.1038/s41467-019-11848-9 pmid: 31488814
21 Cui X D, Zhang B L, Zeng C Y, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction [J]. Mrs. Commun., 2018, 8(3): 1230
doi: 10.1557/mrc.2018.111
22 Nellaiappan S, Katiyar N K, Kumar R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization [J]. ACS Catal., 2020, 10(6): 3658
doi: 10.1021/acscatal.9b04302
23 Chen Z J, Zhang T, Gao X Y, et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution [J]. Adv. Mater., 2021, 33(33): 2101845
doi: 10.1002/adma.v33.33
24 Ye L, Wang J L, Zhang Y Q, et al. A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction [J]. Appl. Surf. Sci., 2021, 556: 149781
doi: 10.1016/j.apsusc.2021.149781
25 Paulus U A, Wokaun A, Scherer G G, et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes [J]. Electrochim. Acta, 2002, 47(22): 3787
doi: 10.1016/S0013-4686(02)00349-3
26 Li H J, He Y, He T, et al. In-situ transformational mycelium-like metal phosphides-encapsulated carbon nanotubes coating on the stainless steel mesh as robust self-supporting electrocatalyst for water splitting [J]. Appl. Surf. Sci., 2021, 549: 149227
doi: 10.1016/j.apsusc.2021.149227
27 Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
doi: 10.1016/j.electacta.2018.05.035
28 Jothi V R, Karuppasamy K, Maiyalagan T, et al. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting [J]. Adv. Energy Mater., 2020, 10(24): 1904020
doi: 10.1002/aenm.v10.24
29 Zhang Y, Xiao J, Lv Q Y, et al. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes [J]. Front. Chem. Sci. Eng., 2018, 12(3): 494
doi: 10.1007/s11705-018-1732-9
30 Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution [J]. Adv. Mater., 2020, 32(3): 1806326
doi: 10.1002/adma.v32.3
31 Ma A L, Zhang L J, Engelberg D, et al. Understanding crystallographic orientation dependent dissolution rates of 90Cu-10Ni alloy: New insights based on AFM/SKPFM measurements and coordination number/electronic structure calculations [J]. Corros. Sci., 2020, 164: 108320
doi: 10.1016/j.corsci.2019.108320
32 Yi X N, Ma A L, Zhang L M, et al. Crystallographic anisotropy of corrosion rate and surface faceting of polycrystalline 90Cu-10Ni in acidic NaCl solution [J]. Mater. Des., 2022, 215: 110429
doi: 10.1016/j.matdes.2022.110429
33 Alcalá M D, Real C, Fombella I, et al. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy [J]. J. Alloy. Compd., 2018, 749: 834
doi: 10.1016/j.jallcom.2018.03.358
34 Yu P F, Fan N S, Zhang Y Y, et al. Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation [J]. Mater. Res. Lett., 2022, 10(3): 124
doi: 10.1080/21663831.2021.2023678
35 Elmaci G, Cerci S, Sunar-Cerci D. The evaluation of the long-term stability of α-MnO2 based OER electrocatalyst in neutral medium by using data processing approach [J]. J. Mol. Struct., 2019, 1195: 632
doi: 10.1016/j.molstruc.2019.06.016
36 Klaus S, Cai Y, Louie M W, et al. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity [J]. J. Phys. Chem. Lett., 2015, 119(13): 7243
37 Deng J, Nellist M R, Stevens M B, et al. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy [J]. Nano Lett., 2017, 17(11): 6922
doi: 10.1021/acs.nanolett.7b03313
38 Zhang S Q, Yu T, Wen H, et al. The latest development of CoOOH two-dimensional materials used as OER catalysts [J]. Chem. Commun., 2020, 56(98): 15387
doi: 10.1039/D0CC05876A
39 Liu X H, Wu J. Coupling interface constructions of NiO-Cr2O3 heterostructures for efficient electrocatalytic oxygen evolution [J]. Electrochim. Acta, 2019, 320: 134577
doi: 10.1016/j.electacta.2019.134577
40 Wang Z L, Liu W J, Hu Y M, et al. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea [J]. Appl. Catal B Environ., 2020, 272: 118959
doi: 10.1016/j.apcatb.2020.118959
41 Feng J X, Xu H, Dong Y, et al. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction [J]. Angew. Chem. Int. Edit., 2016, 55(11): 3694
doi: 10.1002/anie.201511447
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.