Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 147-151    DOI: 10.11901/1005.3093.2021.252
  研究论文 本期目录 | 过刊浏览 |
氟化五边形石墨烯的拉伸性能
孙艺, 韩同伟(), 操淑敏, 骆梦雨
江苏大学土木工程与力学学院 镇江 212013
Tensile Properties of Fluorinated Penta-Graphene
SUN Yi, HAN Tongwei(), CAO Shumin, LUO Mengyu
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
引用本文:

孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
Yi SUN, Tongwei HAN, Shumin CAO, Mengyu LUO. Tensile Properties of Fluorinated Penta-Graphene[J]. Chinese Journal of Materials Research, 2022, 36(2): 147-151.

全文: PDF(7628 KB)   HTML
摘要: 

用分子动力学方法研究了以碳五元环为结构基元的氟化五边形石墨烯的拉伸性能和变形破坏机制,以及氟化率对其力学参数的影响。结果表明:氟化能改变五边形石墨烯的变形破坏机制。低氟化率的五边形石墨烯在拉伸载荷作用下发生从碳五元环到碳多元环的转变,而完全氟化的五边形石墨烯没有发生明显的碳环转变。随着氟化率的提高五边形石墨烯的杨氏模量、断裂应力和应变呈先减小后增大的趋势。低氟化率(<15%)的五边形石墨烯,其力学性能参数均随氟化率的提高明显降低。完全氟化能提高五边形石墨烯的杨氏模量(约为29.56%),并大幅度降低其断裂应变,而其断裂应力与五边形石墨烯相当。

关键词 材料科学基础学科氟化五边形石墨烯分子动力学氟化率力学性能ReaxFF反应力场    
Abstract

The tensile mechanical properties and failure mechanism of fluorinated penta-graphene, as well as the effect of different ratio of fluorinated area on the mechanical property of fluorinated penta-graphene were studied by means of molecular dynamics simulations. The results show that fluorination can change the failure mechanism of penta-graphene. The penta-graphene with low ratio of fluorinated area undergoes structural transformation from pentagon to polygon by external load. However, the fully fluorinated penta-graphene does not undergo structural transformation under tension. The Young's modulus, fracture stress and strain of penta-graphene decrease first and then increased with the increase of the ratio of fluorinated area. When the ratio of fluorinated area is low (<15%), the mechanical parameters are significantly reduced with rising ratio of fluorinated area. Fully fluorination can increase the Young's modulus of penta-graphene by about 29.56%, and greatly reduce the fracture strain, while the fracture stress is equivalent to that of pristine penta-graphene. These results can provide a theoretical basis for effectively adjusting the mechanical properties of two-dimensional nanomaterials such as penta-graphene.

Key wordsfoundational discipline in materials science    fluorinated penta-graphene    molecular dynamics    fluorination coverages    mechanical properties    ReaxFF reactive force-field
收稿日期: 2021-04-19     
ZTFLH:  TB383  
基金资助:江苏省高等学校自然科学研究重大项目(17KJA130001);高端装备关键结构健康管理国际联合研究中心开放课题(KFJJ20-02N)
作者简介: 孙 艺,女,2001年生,本科生
图1  氟化五边形石墨烯的分子动力学模型和原子结构示意图
图2  不同氟化率五边形石墨烯的拉伸应力应变曲线
图3  氟化率为10%和100%的五边形石墨烯不同变形阶段的原子构型
图4  氟化五边形石墨烯的杨氏模量、断裂应力和应变与氟化率的关系
1 Zhang S H , Zhou J , Wang Q , et al . Penta-graphene: A new carbon allotrope [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(8): 2372.
2 Sun H , Mukherjee S , Singh C V . Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study [J]. Phys. Chem. Chem. Phys., 2016, 18(38): 26736
3 Xu W , Zhang G , Li B . Thermal conductivity of penta-graphene from molecular dynamics study [J]. J. Chem. Phys., 2015, 143(15): 154703
4 Balandin A A . Thermal properties of graphene and nanostructured carbon materials [J]. Nat. Mater., 2011, 10(8): 569
5 Cranford S W . When is 6 less than 5? Penta- to hexa-graphene transition [J]. Carbon, 2016, 96: 421
6 Han T W , Cao S M , Wang X Y , et al . Mechanical behaviours of penta-graphene and effects of hydrogenation [J]. Mater. Res. Express, 2019, 6(8): 85612
7 Rahaman O , Mortazavi B , Dianat A , et al . Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension [J]. Flatchem, 2017, 1: 65
8 Zhang Y Y , Pei Q X , Sha Z D , et al . Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization [J]. Nano Res., 2017, 10(11): 3865
9 Le M Q . Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets [J]. Comput. Mater. Sci., 2017, 136: 181
10 Wu X F , Varsheny V , Lee J , et al . Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity [J]. Nano Lett., 2016, 16(6): 3925
11 Li X , Zhang S H , Wang F Q , et al . Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination [J]. Phys. Chem. Chem. Phys., 2016, 18(21): 14191
12 Plimpton S . Fast Parallel Algorithms for Short-Range Molecular Dynamics [J]. J. Comput. Phys., 1995, 117(1): 1
13 van Duin A C T , Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons [J]. J. Phys. Chem. A, 2001, 105(41): 9396
14 Zhao Y P . Physical Mechanics of Surfaces and Interfaces [M]. Beijing: Science Press, 2012
14 赵亚溥 . 表面与界面物理力学 [M]. 北京: 科学出版社, 2012
15 Xu Z , Wang X X , Liang H Y . Molecular dynamics simulation of the strain rate effect and size effect for Cu nanowire [J]. Chin. J. Mater. Res., 2003, 17(3): 262
15 徐 洲, 王秀喜, 梁海弋 . 铜纳米丝的应变率和尺寸效应的分子动力学模拟 [J]. 材料研究学报, 2003, 17(3): 262
16 Han T W , He P F , Wang J , et al . Strain rate dependences of tensile failure process for single graphene sheet: A molecular dynamics study [J]. Sci. China, Ser. G, 2009, 39(9): 1312
16 韩同伟, 贺鹏飞, 王 健 等 . 单层石墨烯薄膜拉伸破坏应变率相关性的分子动力学研究 [J]. 中国科学G辑, 2009, 39(9): 1312
17 Zhao Y P . Nano and Mesoscopic Mechanics [M]. Beijing: Science Press, 2014
17 赵亚溥 . 纳米与介观力学 [M]. 北京: 科学出版社, 2014
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[6] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.