|
|
基于高活性碳纳米管海绵体载硫的锂硫电池 |
张明, 王志勇, 罗琴, 代正昆, 黎业生( ), 吴子平( ) |
江西理工大学材料冶金化学学部 赣州 341000 |
|
Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries |
ZHANG Ming, WANG Zhiyong, LUO Qin, DAI Zhengkun, LI Yesheng( ), WU Ziping( ) |
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China |
引用本文:
张明, 王志勇, 罗琴, 代正昆, 黎业生, 吴子平. 基于高活性碳纳米管海绵体载硫的锂硫电池[J]. 材料研究学报, 2021, 35(1): 65-71.
Ming ZHANG,
Zhiyong WANG,
Qin LUO,
Zhengkun DAI,
Yesheng LI,
Ziping WU.
Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries[J]. Chinese Journal of Materials Research, 2021, 35(1): 65-71.
1 |
Wang W K, Yu Z B, Yuan K G, et al. Key materials of high energy lithium sulfur batteries [J]. Progr. Chem., 2011, 23: 540
|
1 |
王维坤, 余仲宝, 苑克国等. 高比能锂硫电池关键材料的研究 [J]. 化学进展, 2011, 23: 540
|
2 |
Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries [J]. New Carbon Mater., 2014, 29: 241
|
2 |
张强, 程新兵, 黄佳琦等. 碳质材料在锂硫电池中的应用研究进展 [J]. 新型炭材料, 2014, 29: 241
|
3 |
Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design [J]. Nat. Commun., 2016, 7: 11203
|
4 |
Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts [J]. Nano Lett., 2016, 16: 519
|
5 |
He Q, Liao X B, Xia L X, et al. Accurate binding energies for lithium polysulfides and assessment of density functionals for lithium-sulfur battery research [J]. J. Phys. Chem., 2019, 123C: 20737
|
6 |
Zhang M, Chen W, Xue L X, et al. Adsorption-catalysis design in the lithium-sulfur battery [J]. Adv. Energy Mater., 2020, 14: 1903008
|
7 |
Cai D, Wang L L, Li L, et al. Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance [J]. J. Mater. Chem., 2019, 7: 806
|
8 |
Jiang H Q, Liu X C, Wu Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries [J]. Angew. Chem. Int. Ed., 2018, 57: 3916
|
9 |
Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites [J]. Carbon, 2013, 65: 124
|
10 |
Song Q, Ye F, Yin X W, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding [J]. Adv. Mater., 2017, 29: 1701583
|
11 |
Wu Z P, Liu K X, Lv C, et al. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms [J]. Small, 2018, 14: 1800414
|
12 |
Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
|
13 |
Dou S, Li X Y, Tao L, et al. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis [J]. Chem. Commun., 2016, 52: 9727
|
14 |
Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56
|
15 |
Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358: 220
|
16 |
Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization [J]. Chem. Phys. Lett., 1995, 243: 49
|
17 |
Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996, 273: 483
|
18 |
Dai H J, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J]. Chem. Phys. Lett., 1996, 260: 471
|
19 |
Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes [J]. J. Phys. Chem., 1999, 103B: 6484
|
20 |
Cao W Q, Wang W Z, Shi H L, et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano Res., 2018, 11: 1437
|
21 |
Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery [J]. Carbon, 2017, 113: 371
|
22 |
Zhou G M, Wang D W, Li F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries [J]. Energy Environ. Sci., 2012, 5: 8901
|
23 |
Fang R P, Li G X, Zhao S Y, et al. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries [J]. Nano Energy, 2017, 42: 205
|
24 |
Lu Q, Zhong Y J, Zhou W, et al. Dodecylamine-induced synthesis of a nitrogen-doped carbon comb foradvanced lithium-sulfur battery cathodes [J]. Adv. Mater. Interf., 2018, 5: 1701659
|
25 |
Liu T, Zhang M, Wang Y L, et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium-ion battery withstanding variable weather [J]. Adv. Energy Mater., 2018, 8: 1802349
|
26 |
Cheng X B, Huang J Q, Zhang Q, et al. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J]. Nano Energy, 2014, 4: 65
|
27 |
Zhang Z, Kong L L, Liu S, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery [J]. Adv. Energy Mater., 2017, 7: 1602543
|
28 |
Yang W, Yang W, Song A L, et al. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries [J]. Nanoscale, 2017, 10: 816
|
29 |
Zhang H, Zhao W Q, Zou M C, et al. 3D, Mutually embedded MOF@ carbon nanotube hybrid networks for high-performance lithium-sulfur batteries [J]. Adv. Energy Mater., 2018, 8: 1800013
|
30 |
Zhang J, You C Y, Zhang W H, et al. Conductive bridging effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode [J]. Electrochim. Acta, 2017, 250: 159
|
31 |
Guo Z Q, Nie H G, Yang Z, et al. Lithium-sulfur batteries: 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries [J]. Adv. Sci., 2018, 5: 1870043
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|