Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 65-71    DOI: 10.11901/1005.3093.2020.091
  研究论文 本期目录 | 过刊浏览 |
基于高活性碳纳米管海绵体载硫的锂硫电池
张明, 王志勇, 罗琴, 代正昆, 黎业生(), 吴子平()
江西理工大学材料冶金化学学部 赣州 341000
Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries
ZHANG Ming, WANG Zhiyong, LUO Qin, DAI Zhengkun, LI Yesheng(), WU Ziping()
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

张明, 王志勇, 罗琴, 代正昆, 黎业生, 吴子平. 基于高活性碳纳米管海绵体载硫的锂硫电池[J]. 材料研究学报, 2021, 35(1): 65-71.
Ming ZHANG, Zhiyong WANG, Qin LUO, Zhengkun DAI, Yesheng LI, Ziping WU. Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries[J]. Chinese Journal of Materials Research, 2021, 35(1): 65-71.

全文: PDF(5674 KB)   HTML
摘要: 

用CVD法制备的碳纳米管(CNTs)之间的相互吸引,将其堆叠成具有网状结构、多孔及高活性等优点的CNT海绵体(CNTS)。于是,硫蒸气可在CNTs管束上形核沉积并与其紧密接触,使正极电子的高速传输从而提高电池的倍率性能;用XRD、SEM、拉曼光谱等手段测试CNTS载硫前后的极片,考察了硫在CNTs表面的分布和载硫对其结构的影响;对用极片组装的电池进行电化学测试,结果表明:在0.16 A·g-1小电流密度下放电比容量高达1250 mAh·g-1,在1.58 A·g-1大电流密度下放电比容量仍稳定在823 mAh·g-1,表明这种锂硫电池具有优异的倍率性能。电池的长循环测试结果表明:每圈容量衰减率为0.22%,表明这种电池还具有良好的循环稳定性,衰减率较低。

关键词 无机非金属材料碳纳米管锂硫电池硫蒸气高活性循环稳定性    
Abstract

Carbon nanotubes (CNTs) prepared by CVD method are easily to attract and stack into sponges. The obtained CNT sponges (CNTS) show entangled networks, porosity and high activity. Due to these properties of the CNTS, sulfur vapor can deposite and nucleate on the CNT bundles to form electrode with tight contact structure, thereby high efficiency of electron transfer in the electrode and rate capability of battery based on the electrode can be realized. The distribution of sulfur and the structure of CNTs after sulfur deposition have been investigated through XRD, SEM, Raman spectroscopy and others. In addition, the electrochemical performances of the battery based on the electrode have been tested. The results show that the battery presents discharge specific capacity of 1250 mAh·g-1 at current density of 0.16 A·g-1, and the specific capacity is stable at 823 mAh·g-1 as the current density increased to 1.58 A·g-1, indicating a remarkable rate capability of the battery. Further, the cycling capacities of the battery have been also measured. The results show that the attenuation of each cycle capacity is only 0.22%, indicating an excellent cyclic stability of the battery based on the electrode.

Key wordsinorganic non-metallic materials    carbon nanotube    lithium-sulfur battery    sulfur vapor    high activated    cyclic stability
收稿日期: 2020-03-24     
ZTFLH:  TQ152  
基金资助:国家自然科学基金(51861009);江西省教育厅科技重点项目(GJJ160596)
作者简介: 张明,男,1995年生,硕士生
图1  CNTS的合成装置和CNTS实物
图2  制备电极的示意图和电极的实物照片
图3  不同样品的SEM照片和管径分布
图4  CNTS@S的EDS测试结果
图5  CNTS载硫前后的结构
图6  电池的电化学性能和化成后交流阻抗图谱
1 Wang W K, Yu Z B, Yuan K G, et al. Key materials of high energy lithium sulfur batteries [J]. Progr. Chem., 2011, 23: 540
1 王维坤, 余仲宝, 苑克国等. 高比能锂硫电池关键材料的研究 [J]. 化学进展, 2011, 23: 540
2 Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries [J]. New Carbon Mater., 2014, 29: 241
2 张强, 程新兵, 黄佳琦等. 碳质材料在锂硫电池中的应用研究进展 [J]. 新型炭材料, 2014, 29: 241
3 Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design [J]. Nat. Commun., 2016, 7: 11203
4 Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts [J]. Nano Lett., 2016, 16: 519
5 He Q, Liao X B, Xia L X, et al. Accurate binding energies for lithium polysulfides and assessment of density functionals for lithium-sulfur battery research [J]. J. Phys. Chem., 2019, 123C: 20737
6 Zhang M, Chen W, Xue L X, et al. Adsorption-catalysis design in the lithium-sulfur battery [J]. Adv. Energy Mater., 2020, 14: 1903008
7 Cai D, Wang L L, Li L, et al. Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance [J]. J. Mater. Chem., 2019, 7: 806
8 Jiang H Q, Liu X C, Wu Y S, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries [J]. Angew. Chem. Int. Ed., 2018, 57: 3916
9 Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites [J]. Carbon, 2013, 65: 124
10 Song Q, Ye F, Yin X W, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding [J]. Adv. Mater., 2017, 29: 1701583
11 Wu Z P, Liu K X, Lv C, et al. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms [J]. Small, 2018, 14: 1800414
12 Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
13 Dou S, Li X Y, Tao L, et al. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis [J]. Chem. Commun., 2016, 52: 9727
14 Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56
15 Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358: 220
16 Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled manotubes by laser vaporization [J]. Chem. Phys. Lett., 1995, 243: 49
17 Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996, 273: 483
18 Dai H J, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J]. Chem. Phys. Lett., 1996, 260: 471
19 Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes [J]. J. Phys. Chem., 1999, 103B: 6484
20 Cao W Q, Wang W Z, Shi H L, et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano Res., 2018, 11: 1437
21 Kim S, Song H, Jeong Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery [J]. Carbon, 2017, 113: 371
22 Zhou G M, Wang D W, Li F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries [J]. Energy Environ. Sci., 2012, 5: 8901
23 Fang R P, Li G X, Zhao S Y, et al. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries [J]. Nano Energy, 2017, 42: 205
24 Lu Q, Zhong Y J, Zhou W, et al. Dodecylamine-induced synthesis of a nitrogen-doped carbon comb foradvanced lithium-sulfur battery cathodes [J]. Adv. Mater. Interf., 2018, 5: 1701659
25 Liu T, Zhang M, Wang Y L, et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium-ion battery withstanding variable weather [J]. Adv. Energy Mater., 2018, 8: 1802349
26 Cheng X B, Huang J Q, Zhang Q, et al. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J]. Nano Energy, 2014, 4: 65
27 Zhang Z, Kong L L, Liu S, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery [J]. Adv. Energy Mater., 2017, 7: 1602543
28 Yang W, Yang W, Song A L, et al. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries [J]. Nanoscale, 2017, 10: 816
29 Zhang H, Zhao W Q, Zou M C, et al. 3D, Mutually embedded MOF@ carbon nanotube hybrid networks for high-performance lithium-sulfur batteries [J]. Adv. Energy Mater., 2018, 8: 1800013
30 Zhang J, You C Y, Zhang W H, et al. Conductive bridging effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode [J]. Electrochim. Acta, 2017, 250: 159
31 Guo Z Q, Nie H G, Yang Z, et al. Lithium-sulfur batteries: 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries [J]. Adv. Sci., 2018, 5: 1870043
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.