|
|
MXene在锂硫电池中应用的研究进展 |
季雨辰, 刘树和( ), 张天宇, 查成 |
昆明理工大学冶金与能源工程学院 昆明 650093 |
|
Research Progress of MXene Used in Lithium Sulfur Battery |
JI Yuchen, LIU Shuhe( ), ZHANG Tianyu, ZHA Cheng |
Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
引用本文:
季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
Yuchen JI,
Shuhe LIU,
Tianyu ZHANG,
Cheng ZHA.
Research Progress of MXene Used in Lithium Sulfur Battery[J]. Chinese Journal of Materials Research, 2023, 37(7): 481-494.
1 |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22 (3): 587
doi: 10.1021/cm901452z
|
2 |
Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nature Chemistry, 2015, 7(1): 19
doi: 10.1038/nchem.2085
pmid: 25515886
|
3 |
Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects [J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186
doi: 10.1002/anie.201304762
|
4 |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O-2 and Li-S batteries with high energy storage [J]. Nature Materials, 2012, 11(1): 19
doi: 10.1038/nmat3191
|
5 |
Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries [J]. Chemical Reviews, 2014, 114(23): 11751
doi: 10.1021/cr500062v
pmid: 25026475
|
6 |
Bai S Y, Liu X Z, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries [J]. Nature Energy, 2016, 1: 16094
doi: 10.1038/nenergy.2016.94
|
7 |
Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chemical Society Reviews, 2016, 45(20): 5605
pmid: 27460222
|
8 |
Wang L Y, Zhu X Y, Guan Y P, et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes [J]. Energy Storage Materials, 2018, 11: 191
doi: 10.1016/j.ensm.2017.10.016
|
9 |
Ji X L, Nazar L F. Advances in Li-S batteries [J]. Journal of Materials Chemistry, 2010, 20(44): 9821
doi: 10.1039/b925751a
|
10 |
Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts of Chemical Research, 2013, 46(5): 1125
doi: 10.1021/ar300179v
pmid: 23095063
|
11 |
Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects [J]. Advanced Materials, 2017, 29(48): 1
|
12 |
Jeon B H, Yeon J H, Kim K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries [J]. Journal of Power Sources, 2002, 109(1): 89
doi: 10.1016/S0378-7753(02)00050-2
|
13 |
Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries [J]. Nature Communications, 2015, 6: 5682
doi: 10.1038/ncomms6682
pmid: 25562485
|
14 |
Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260
doi: 10.1002/aenm.v7.24
|
15 |
Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287
|
16 |
Xing Z Y, Tan G Q, Yuan Y F, et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes [J]. Advanced Materials, 2020, 32(31): 002403
|
17 |
Zhang S, Ueno K, Dokko K, et al. Recent advances in electrolytes for lithium-sulfur batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500117
doi: 10.1002/aenm.201500117
|
18 |
Zhang J, Yang C P, Yin Y X, et al. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries [J]. Advanced Materials, 2016, 28(43): 9539
doi: 10.1002/adma.201602913
|
19 |
Hu H, Cheng H Y, Liu Z F, et al. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries [J]. Nano Letters, 2015, 15(8): 5116
doi: 10.1021/acs.nanolett.5b01294
pmid: 26200760
|
20 |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nature Materials, 2009, 8(6): 500
doi: 10.1038/nmat2460
|
21 |
Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system [J]. Journal of the Electrochemical Society, 2004, 151(11): A1969
doi: 10.1149/1.1806394
|
22 |
He X M, Ren J G, Wang L, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 190(1): 154
doi: 10.1016/j.jpowsour.2008.07.034
|
23 |
Ryu H S, Ahn H J, Kim K W, et al. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte [J]. Electrochimica Acta, 2006, 52(4): 1563
doi: 10.1016/j.electacta.2006.01.086
|
24 |
Yang X, Zhang L, Zhang F, et al. Sulfur-Infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries [J]. Acs Nano, 2014, 8(5): 5208
doi: 10.1021/nn501284q
pmid: 24749945
|
25 |
Titirici M M, White R J, Brun N, et al. Sustainable carbon materials [J]. Chemical Society Reviews, 2015, 44(1): 250
doi: 10.1039/C4CS00232F
|
26 |
Liu Y T, Han D D, Wang L, et al. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery [J]. Advanced Energy Materials, 2019, 9(11): 1803477
doi: 10.1002/aenm.v9.11
|
27 |
Li Q, Zhang Z, Zhang K, et al. Synthesis and electrochemical performance of TiO2-sulfur composite cathode materials for lithium-sulfur batteries [J]. Journal of Solid State Electrochemistry, 2013, 17(11): 2959
doi: 10.1007/s10008-013-2203-3
|
28 |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248
doi: 10.1002/adma.201102306
|
29 |
Wang A N, Chen Y X, Liu L, et al. Sulfur nanoparticles/Ti3C2T x MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries [J]. Dalton Transactions, 2021, 50(16): 5574
doi: 10.1039/D1DT00381J
|
30 |
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 16098
doi: 10.1038/natrevmats.2016.98
|
31 |
Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2T x MXene for electrochemical energy storage [J]. Small, 2018, 14(17): 1703419
doi: 10.1002/smll.v14.17
|
32 |
Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials [J]. Advanced Materials, 2014, 26(7): 992
doi: 10.1002/adma.201304138
|
33 |
Song J J, Su D W, Xie X Q, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries [J]. Acs Applied Materials & Interfaces, 2016, 8(43): 29427
|
34 |
Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(13): 1702485
doi: 10.1002/aenm.v8.13
|
35 |
Ye Z Q, Jiang Y, Li L, et al. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction [J]. Advanced Materials, 2021, 33(33): 2101204
doi: 10.1002/adma.v33.33
|
36 |
Xiong D B, Huang S Z, Fang D L, et al. Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries [J]. Small, 2021, 17(34): 2007442
doi: 10.1002/smll.v17.34
|
37 |
Song F, Li G H, Zhu Y S, et al. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets [J]. Journal of Materials Chemistry A, 2020, 8(36): 18538
doi: 10.1039/D0TA06222G
|
38 |
Jana M L, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy & Environmental Science, 2020, 13(4): 1049
|
39 |
Wang Y T, Shen J L, Xu L C, et al. Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries [J]. Physical Chemistry Chemical Physics, 2019, 21(34): 18559
doi: 10.1039/C9CP03419F
|
40 |
Liu Y H, Wang C Y, Yang S L, et al. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2022, 66: 429
doi: 10.1016/j.jechem.2021.08.040
|
41 |
Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices [J]. Nature Reviews Materials, 2016, 1(6): 16023
doi: 10.1038/natrevmats.2016.23
|
42 |
Yang C Y, Li Y, Peng W C, et al. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries [J]. Chemical Engineering Journal, 2022, 427(2): 131792
doi: 10.1016/j.cej.2021.131792
|
43 |
Meng R J, Deng Q Y, Peng C X, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries [J]. Nano Today, 2020, 35: 100991
doi: 10.1016/j.nantod.2020.100991
|
44 |
Qiu S Y, Wang C, Jiang Z X, et al. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries [J]. Nanoscale, 2020, 12(32): 16678
doi: 10.1039/D0NR03528A
|
45 |
Ye Z Q, Jiang Y, Qian J, et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103963
doi: 10.1016/j.nanoen.2019.103963
|
46 |
Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries [J]. Chemical Engineering Journal, 2019, 373: 1309
doi: 10.1016/j.cej.2019.05.119
|
47 |
Wang H, Liu X, Niu P, et al. Porous two-dimensional materials for photocatalytic and electrocatalytic applications [J]. Matter, 2020, 2(6): 1377
doi: 10.1016/j.matt.2020.04.002
|
48 |
Shi H D, Zhang C J, Lu P F, et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes [J]. Acs Nano, 2019, 13(12): 14308
doi: 10.1021/acsnano.9b07710
pmid: 31751116
|
49 |
Shi H D, Yue M, Zhang C J, et al. 3D Flexible, conductive, and recyclable Ti3C2T x MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode [J]. Acs Nano, 2020, 14(7): 8678
doi: 10.1021/acsnano.0c03042
|
50 |
Bao W Z, Xie X Q, Xu J, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery [J]. Chemistry-a European Journal, 2017, 23(51): 12613
doi: 10.1002/chem.201702387
|
51 |
Zhang Y L, Mu Z J, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries [J]. Advanced Functional Materials, 2018, 28(38): 1707578
doi: 10.1002/adfm.v28.38
|
52 |
Wang W, Huai L Y, Wu S Y, et al. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst [J]. Acs Nano, 2021, 15(7): 11619
doi: 10.1021/acsnano.1c02047
pmid: 34247479
|
53 |
Wen C Y, Zheng X Z, Li X Y, et al. Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 409: 128102
doi: 10.1016/j.cej.2020.128102
|
54 |
Zhang L, Bi J Y, Zhao Z K, et al. Sulfur@self-assembly 3D MXene hybrid cathode material for lithium-sulfur batteries [J]. Electrochimica Acta, 2021, 370: 137759
doi: 10.1016/j.electacta.2021.137759
|
55 |
Zhang B, Luo C, Zhou G M, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading [J]. Advanced Functional Materials, 2021, 31(26): 2100793
doi: 10.1002/adfm.v31.26
|
56 |
Tian Y X, Huang H W, Chen C, et al. MXene Nanoflakes confined in multichannel carbon nanofibers as electrocatalysts for lithium-sulfur batteries [J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(1): 010906
|
57 |
Liu Y E, Zhang M G, Gao Y N, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating [J]. Journal of Alloys and Compounds, 2022, 898: 1
|
58 |
Hou R H, Zhang S J, Zhang Y S, et al. A "three-region" configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries [J]. Advanced Functional Materials, 2022, 32(19): 2200302
doi: 10.1002/adfm.v32.19
|
59 |
Xu M Y, Liang L, Qi J, et al. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries [J]. Small, 2021, 17(17): 2007446
doi: 10.1002/smll.v17.17
|
60 |
Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry [J]. Nano Energy, 2020, 70: 104555
doi: 10.1016/j.nanoen.2020.104555
|
61 |
Wang T, Luo D, Zhang Y G, et al. Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries [J]. Acs Nano, 2021, 15(12): 19457
doi: 10.1021/acsnano.1c06213
|
62 |
Xiong C, Zhu G Y, Jiang H R, et al. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries [J]. Energy Storage Materials, 2020, 33: 147
doi: 10.1016/j.ensm.2020.08.006
|
63 |
Wang H, He S A, Cui Z, et al. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 420: 129693
doi: 10.1016/j.cej.2021.129693
|
64 |
Zhao W L, Lei Y J, Zhu Y P, et al. Hierarchically structured Ti3C2T x MXene paper for Li-S batteries with high volumetric capacity [J]. Nano Energy, 2021, 86(1): 106120
doi: 10.1016/j.nanoen.2021.106120
|
65 |
Wang J L, Zhang Z, Yan X F, et al. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in li-s battery [J]. Nano-Micro Letters, 2020, 12(1): 40
doi: 10.1007/s40820-020-0368-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|