Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 481-494    DOI: 10.11901/1005.3093.2022.360
  综述 本期目录 | 过刊浏览 |
MXene在锂硫电池中应用的研究进展
季雨辰, 刘树和(), 张天宇, 查成
昆明理工大学冶金与能源工程学院 昆明 650093
Research Progress of MXene Used in Lithium Sulfur Battery
JI Yuchen, LIU Shuhe(), ZHANG Tianyu, ZHA Cheng
Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
Yuchen JI, Shuhe LIU, Tianyu ZHANG, Cheng ZHA. Research Progress of MXene Used in Lithium Sulfur Battery[J]. Chinese Journal of Materials Research, 2023, 37(7): 481-494.

全文: PDF(26184 KB)   HTML
摘要: 

MXene是一种新兴的二维过渡金属碳化物或碳氮化物,优异的金属导电性、丰富的表面官能团和超薄二维结构使其在电化学储能方面的应用有巨大的潜力。锂硫电池的理论比容量较高,在新一代储能器件中极具竞争力。二维MXene及其组装的三维材料作为一种先进的硫载体可通过多种途径克服锂硫电池固有的导电性差和放电产物溶解严重的问题。本文综述了目前二维和三维结构的MXene材料在锂硫电池中的应用,分析了性能与结构之间的关系,总结了目前存在的挑战和困难并对未来的设计方向提出一些看法。

关键词 评述MXene锂硫电池复合材料    
Abstract

As an emerging two-dimensional transition metal carbide or carbonitride, MXene exhibits excellent metallic conductivity, abundant surface functional groups and ultrathin two-dimensional structure, which endows it great potential in electrochemical energy storage. Lithium-sulfur batteries have a high theoretical specific capacity and become a very competitive choice in the new generation of energy storage devices. Two-dimensional MXenes and the assembled three-dimensional materials, as advanced sulfur carriers, can effectively improve the inherent poor conductivity and serious dissolution of discharge products of lithium-sulfur batteries. This paper reviews the current applications of MXene materials with two-dimensional and three-dimensional structures in lithium-sulfur batteries, analyzes the relationship between different structures and performance, summarizes the current challenges and difficulties, and gives a view on the direction to proceed for future designs.

Key wordsreview    MXene    lithium sulfur battery    composites
收稿日期: 2022-07-01     
ZTFLH:  O646  
基金资助:国家自然科学基金(51264016)
通讯作者: 刘树和,副研究员,2538234121@qq.com,研究方向为锂离子电池和高比能锂硫电池的电极材料设计、制备、储能性能和机理
Corresponding author: LIU Shuhe, Tel: 15912595890, E-mail: 2538234121@qq.com
作者简介: 季雨辰,男,1997年生,硕士
图1  锂硫电池的电化学反应原理和充放电曲线示意图[7,10]
图2  “穿梭效应”的示意图[19]
图3  MXene蚀刻前后的SEM图片[31]
图4  MXene的结构形成示意图[35]
图5  褶皱N-Ti3C2T x /S纳米片的合成示意图[37]
图6  硫脲原位硫化示意图[45]
图7  CTF/TNS异质结构示意图[46]
图8  MXene@TiO2纳米阵列的SEM图[47]
图9  CoZn-Se@N-MX的FESEM图[38]
图10  MXene/RGO纳米片的合成示意图和SEM图[52]
图11  MXene/MoS2-C纳米复合材料的SEM和HRTEM图像[53]
图12  (浸硫)Co-MoSe2/MXene合成过程示意图[54]
图13  Ti3C2T x @AlF3和分层Ti3C2T x @AlF3/NH复合材料示意图[56]
图14  dTCP材料的结构示意图和横截面SEM图片[57]
图15  PA-MXene/CNT的单向冷冻干燥制备示意图[58]
图16  (a)“三区”示意图和(b)硫负载量10 mg·cm-2时0.05C下的循环性能图[61]
图17  Ti3C2T x -CNT复合材料的结构示意图和SEM图片[62]
图18  P-NTC复合材料的MF模板合成示意图[63]
图19  中空Co-CNT@MXene的SEM和EDS图像[65]
图20  S-CNT和S-CNT@MXene球的SEM图片[66]
图21  S@PCL复合材料的合成示意图和横截面的SEM图片[67]
图22  N‑Ti3C2@CNT复合材料的合成示意图和SEM图片[68]
1 Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22 (3): 587
doi: 10.1021/cm901452z
2 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nature Chemistry, 2015, 7(1): 19
doi: 10.1038/nchem.2085 pmid: 25515886
3 Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects [J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186
doi: 10.1002/anie.201304762
4 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O-2 and Li-S batteries with high energy storage [J]. Nature Materials, 2012, 11(1): 19
doi: 10.1038/nmat3191
5 Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries [J]. Chemical Reviews, 2014, 114(23): 11751
doi: 10.1021/cr500062v pmid: 25026475
6 Bai S Y, Liu X Z, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries [J]. Nature Energy, 2016, 1: 16094
doi: 10.1038/nenergy.2016.94
7 Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chemical Society Reviews, 2016, 45(20): 5605
pmid: 27460222
8 Wang L Y, Zhu X Y, Guan Y P, et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes [J]. Energy Storage Materials, 2018, 11: 191
doi: 10.1016/j.ensm.2017.10.016
9 Ji X L, Nazar L F. Advances in Li-S batteries [J]. Journal of Materials Chemistry, 2010, 20(44): 9821
doi: 10.1039/b925751a
10 Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts of Chemical Research, 2013, 46(5): 1125
doi: 10.1021/ar300179v pmid: 23095063
11 Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects [J]. Advanced Materials, 2017, 29(48): 1
12 Jeon B H, Yeon J H, Kim K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries [J]. Journal of Power Sources, 2002, 109(1): 89
doi: 10.1016/S0378-7753(02)00050-2
13 Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries [J]. Nature Communications, 2015, 6: 5682
doi: 10.1038/ncomms6682 pmid: 25562485
14 Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260
doi: 10.1002/aenm.v7.24
15 Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287
16 Xing Z Y, Tan G Q, Yuan Y F, et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes [J]. Advanced Materials, 2020, 32(31): 002403
17 Zhang S, Ueno K, Dokko K, et al. Recent advances in electrolytes for lithium-sulfur batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500117
doi: 10.1002/aenm.201500117
18 Zhang J, Yang C P, Yin Y X, et al. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries [J]. Advanced Materials, 2016, 28(43): 9539
doi: 10.1002/adma.201602913
19 Hu H, Cheng H Y, Liu Z F, et al. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries [J]. Nano Letters, 2015, 15(8): 5116
doi: 10.1021/acs.nanolett.5b01294 pmid: 26200760
20 Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nature Materials, 2009, 8(6): 500
doi: 10.1038/nmat2460
21 Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system [J]. Journal of the Electrochemical Society, 2004, 151(11): A1969
doi: 10.1149/1.1806394
22 He X M, Ren J G, Wang L, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 190(1): 154
doi: 10.1016/j.jpowsour.2008.07.034
23 Ryu H S, Ahn H J, Kim K W, et al. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte [J]. Electrochimica Acta, 2006, 52(4): 1563
doi: 10.1016/j.electacta.2006.01.086
24 Yang X, Zhang L, Zhang F, et al. Sulfur-Infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries [J]. Acs Nano, 2014, 8(5): 5208
doi: 10.1021/nn501284q pmid: 24749945
25 Titirici M M, White R J, Brun N, et al. Sustainable carbon materials [J]. Chemical Society Reviews, 2015, 44(1): 250
doi: 10.1039/C4CS00232F
26 Liu Y T, Han D D, Wang L, et al. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery [J]. Advanced Energy Materials, 2019, 9(11): 1803477
doi: 10.1002/aenm.v9.11
27 Li Q, Zhang Z, Zhang K, et al. Synthesis and electrochemical performance of TiO2-sulfur composite cathode materials for lithium-sulfur batteries [J]. Journal of Solid State Electrochemistry, 2013, 17(11): 2959
doi: 10.1007/s10008-013-2203-3
28 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248
doi: 10.1002/adma.201102306
29 Wang A N, Chen Y X, Liu L, et al. Sulfur nanoparticles/Ti3C2T x MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries [J]. Dalton Transactions, 2021, 50(16): 5574
doi: 10.1039/D1DT00381J
30 Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 16098
doi: 10.1038/natrevmats.2016.98
31 Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2T x MXene for electrochemical energy storage [J]. Small, 2018, 14(17): 1703419
doi: 10.1002/smll.v14.17
32 Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials [J]. Advanced Materials, 2014, 26(7): 992
doi: 10.1002/adma.201304138
33 Song J J, Su D W, Xie X Q, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries [J]. Acs Applied Materials & Interfaces, 2016, 8(43): 29427
34 Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(13): 1702485
doi: 10.1002/aenm.v8.13
35 Ye Z Q, Jiang Y, Li L, et al. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction [J]. Advanced Materials, 2021, 33(33): 2101204
doi: 10.1002/adma.v33.33
36 Xiong D B, Huang S Z, Fang D L, et al. Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries [J]. Small, 2021, 17(34): 2007442
doi: 10.1002/smll.v17.34
37 Song F, Li G H, Zhu Y S, et al. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets [J]. Journal of Materials Chemistry A, 2020, 8(36): 18538
doi: 10.1039/D0TA06222G
38 Jana M L, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy & Environmental Science, 2020, 13(4): 1049
39 Wang Y T, Shen J L, Xu L C, et al. Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries [J]. Physical Chemistry Chemical Physics, 2019, 21(34): 18559
doi: 10.1039/C9CP03419F
40 Liu Y H, Wang C Y, Yang S L, et al. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2022, 66: 429
doi: 10.1016/j.jechem.2021.08.040
41 Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices [J]. Nature Reviews Materials, 2016, 1(6): 16023
doi: 10.1038/natrevmats.2016.23
42 Yang C Y, Li Y, Peng W C, et al. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries [J]. Chemical Engineering Journal, 2022, 427(2): 131792
doi: 10.1016/j.cej.2021.131792
43 Meng R J, Deng Q Y, Peng C X, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries [J]. Nano Today, 2020, 35: 100991
doi: 10.1016/j.nantod.2020.100991
44 Qiu S Y, Wang C, Jiang Z X, et al. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries [J]. Nanoscale, 2020, 12(32): 16678
doi: 10.1039/D0NR03528A
45 Ye Z Q, Jiang Y, Qian J, et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103963
doi: 10.1016/j.nanoen.2019.103963
46 Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries [J]. Chemical Engineering Journal, 2019, 373: 1309
doi: 10.1016/j.cej.2019.05.119
47 Wang H, Liu X, Niu P, et al. Porous two-dimensional materials for photocatalytic and electrocatalytic applications [J]. Matter, 2020, 2(6): 1377
doi: 10.1016/j.matt.2020.04.002
48 Shi H D, Zhang C J, Lu P F, et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes [J]. Acs Nano, 2019, 13(12): 14308
doi: 10.1021/acsnano.9b07710 pmid: 31751116
49 Shi H D, Yue M, Zhang C J, et al. 3D Flexible, conductive, and recyclable Ti3C2T x MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode [J]. Acs Nano, 2020, 14(7): 8678
doi: 10.1021/acsnano.0c03042
50 Bao W Z, Xie X Q, Xu J, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery [J]. Chemistry-a European Journal, 2017, 23(51): 12613
doi: 10.1002/chem.201702387
51 Zhang Y L, Mu Z J, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries [J]. Advanced Functional Materials, 2018, 28(38): 1707578
doi: 10.1002/adfm.v28.38
52 Wang W, Huai L Y, Wu S Y, et al. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst [J]. Acs Nano, 2021, 15(7): 11619
doi: 10.1021/acsnano.1c02047 pmid: 34247479
53 Wen C Y, Zheng X Z, Li X Y, et al. Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 409: 128102
doi: 10.1016/j.cej.2020.128102
54 Zhang L, Bi J Y, Zhao Z K, et al. Sulfur@self-assembly 3D MXene hybrid cathode material for lithium-sulfur batteries [J]. Electrochimica Acta, 2021, 370: 137759
doi: 10.1016/j.electacta.2021.137759
55 Zhang B, Luo C, Zhou G M, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading [J]. Advanced Functional Materials, 2021, 31(26): 2100793
doi: 10.1002/adfm.v31.26
56 Tian Y X, Huang H W, Chen C, et al. MXene Nanoflakes confined in multichannel carbon nanofibers as electrocatalysts for lithium-sulfur batteries [J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(1): 010906
57 Liu Y E, Zhang M G, Gao Y N, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating [J]. Journal of Alloys and Compounds, 2022, 898: 1
58 Hou R H, Zhang S J, Zhang Y S, et al. A "three-region" configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries [J]. Advanced Functional Materials, 2022, 32(19): 2200302
doi: 10.1002/adfm.v32.19
59 Xu M Y, Liang L, Qi J, et al. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries [J]. Small, 2021, 17(17): 2007446
doi: 10.1002/smll.v17.17
60 Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry [J]. Nano Energy, 2020, 70: 104555
doi: 10.1016/j.nanoen.2020.104555
61 Wang T, Luo D, Zhang Y G, et al. Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries [J]. Acs Nano, 2021, 15(12): 19457
doi: 10.1021/acsnano.1c06213
62 Xiong C, Zhu G Y, Jiang H R, et al. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries [J]. Energy Storage Materials, 2020, 33: 147
doi: 10.1016/j.ensm.2020.08.006
63 Wang H, He S A, Cui Z, et al. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 420: 129693
doi: 10.1016/j.cej.2021.129693
64 Zhao W L, Lei Y J, Zhu Y P, et al. Hierarchically structured Ti3C2T x MXene paper for Li-S batteries with high volumetric capacity [J]. Nano Energy, 2021, 86(1): 106120
doi: 10.1016/j.nanoen.2021.106120
65 Wang J L, Zhang Z, Yan X F, et al. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in li-s battery [J]. Nano-Micro Letters, 2020, 12(1): 40
doi: 10.1007/s40820-020-0368-8
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.