Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 523-529    DOI: 10.11901/1005.3093.2018.683
  研究论文 本期目录 | 过刊浏览 |
自供能ZnO/ZnS异质结紫外探测器的性能研究
胡轶1,2,徐思伟2,李想2,贾杰2,桑丹丹3,高世勇2()
1. 太原学院物理系 太原 030032
2. 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
3. 聊城大学物理科学与信息工程学院 山东省光通信科学与技术重点实验室 聊城 252000
Performance of Self-Powered UV Photodetector Based on ZnO/ZnS Heterojunction
Yi HU1,2,Siwei XU2,Xiang LI2,Jie JIA2,Dandan SANG3,Shiyong GAO2()
1. Department of Physics, Taiyuan University, Taiyuan 030032, China
2. School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150001, China
3. School of Physical Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China
引用本文:

胡轶,徐思伟,李想,贾杰,桑丹丹,高世勇. 自供能ZnO/ZnS异质结紫外探测器的性能研究[J]. 材料研究学报, 2019, 33(7): 523-529.
Yi HU, Siwei XU, Xiang LI, Jie JIA, Dandan SANG, Shiyong GAO. Performance of Self-Powered UV Photodetector Based on ZnO/ZnS Heterojunction[J]. Chinese Journal of Materials Research, 2019, 33(7): 523-529.

全文: PDF(5686 KB)   HTML
摘要: 

用化学浴法在ZnO纳米棒表面沉积ZnS制备出ZnO/ZnS核壳纳米棒阵列,使用SEM、XRD和XPS等手段表征了样品的形貌、结构和成分。结果表明,ZnO/ZnS核壳纳米棒阵列表面粗糙,生长致密、分布均匀,其平均直径约为150 nm。以Pt为对电极组装的自供能ZnO/ZnS异质结紫外探测器,对紫外光具有很好的探测性能,能循环工作且性能稳定。这种探测器对微弱的紫外光也有较强的响应和较高的光敏性,且随着光强度的提高光电流密度线性增大。与自供能ZnO纳米棒紫外探测器相比,ZnO/ZnS异质结紫外探测器具有更高的响应速度,上升时间和下降时间分别提高到0.02 s和0.03 s。

关键词 无机非金属材料ZnOZnS异质结紫外探测器    
Abstract

ZnO/ZnS core-shell structured nanorods array has been successfully deposited on ITO substrate via water bath method, and then were characterized by using SEM, XRD and XPS. Results show that the surface of ZnO/ZnS core-shell nanorods array is rough composed of nanorods of 150 nm in diameter, which grown uniformly and densely on the surface of ITO substrate. The self-powered ultraviolet detector was assembled using the ZnO/ZnS core-shell nanorods array and Pt as the counter electrode, then the UV detection performance was investigated. The self-powered ZnO/ZnS heterojunction ultraviolet detector has good reproducibility and stability after multiple cycles of testing. In addition, the device also has a strong photoresponse and high photosensitivity to ultralow light intensity, and displays photoresponse switching behavior as the light intensity increasing. Compared with the self-powered ZnO nanorods detector, the self-powered ZnO/ZnS heterojunction UV detector has faster response with the rise time and decay time of 0.02 s and 0.03 s, respectively.

Key wordsInorganic non-metallic materials    ZnO    ZnS    heterojunction    UV photodetector
收稿日期: 2018-11-30     
ZTFLH:  TN36  
基金资助:山东省自然科学基金(ZR2017QA013);黑龙江省博士后基金(LBH-Q16104)
作者简介: 胡 轶,男,1982年生,讲师
图1  ZnO纳米棒与ZnO/ZnS核壳纳米棒阵列的SEM图片
图2  ZnO纳米棒和ZnO/ZnS核壳纳米棒阵列的能谱图
图3  ITO衬底、ZnO纳米棒和ZnO/ZnS核壳纳米棒阵列的XRD图谱
图4  ZnO/ZnS核壳纳米棒阵列的XPS光谱图
图5  自供能ZnO纳米棒和ZnO/ZnS纳米棒紫外探测器在紫外光开/关下的电流密度曲线和单个周期的光电响应时间曲线
图6  自供能ZnO/ZnS异质结紫外探测器在不同光强下的光电流密度曲线和功率密度-光电流密度曲线
图7  自供能ZnO/ZnS异质结紫外探测器的工作原理
[1] Wang X D, Song J H, Summers C J, et al. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications [J]. Journal of Physical Chemistry B, 2006, 110(15): 7720
[2] Suo B, Wu W W, Qin Y, et al. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates [J]. Advanced Functional Materials, 2011, 21(23): 4464
[3] Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chinese Journal of Materials Research. 2017, 31(8): 619
[4] Fang X M, Zeng Z, Gao S Y, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-likearrays of ZnO [J]. Chinese Journal of Materials Research, 2018, 32(12): 945
[5] Wang Z L. The new field of nanopiezotronics [J]. Materials Today, 2007, 10(5): 20
[6] Bai Z K, Xie C S, Zhang S P, et al. Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method [J]. Sensors and Actuators B: Chemical, 2010, 151(1): 107
[7] Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chinese Journal of Materials Research, 2015, 29(03): 213
[8] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312(5771): 242
[9] Cong R M, Yu H Q, Luo Y J, et al. Layer-by-layer construction and photocatalytic properties of Fe3O4/PAMAM/ZnO/TiO2 core-shell nanoparticles [J]. Chinese Journal of Materials Research, 2018, 32(10): 759
[10] Pradhan B, Batabyal S K, Pal A J. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells [J]. Solar Energy Materials & Solar Cells, 2007, 91(9): 769
[11] Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation [J]. Advanced Functional Materials, 2003, 13(1): 9
[12] Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J]. Chinese Journal of Materials Research, 2015, 29(7): 529
[13] Ahn S E, Ji H J, Kim K, et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire [J]. Applied Physics Letters, 2007, 90(15): 153106
[14] Liu K W, Sakurai M, Liao M Y, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles [J]. Journal of Physical Chemistry C, 2010, 114(46): 19835
[15] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69
[16] Manekkathodi A, Lu M Y, Wang C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics [J]. Advanced Materials, 2010, 22(36): 4059
[17] Mohammed A F, Salah W R. Synthesis of ZnS quantum dots for QDs-LED hybrid device with different cathode materials [J]. Journal of Physics: Conference Series. 2018(1032): 012010
[18] Wang K, Chen J J, Zeng Z M, et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays [J]. Applied Physics Letters, 2010, 96(12): 123105
[19] Schrier J, Demchenko D O, Wang L. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications [J]. Nano Letters, 2007, 7(8): 2377
[20] Rai S C, Wang K, Ding Y, et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array [J]. Acs Nano, 2015, 9(6): 6419
[21] Hu L F, Yan J, Liao M Y, et al. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt [J]. Advanced Materials, 2012, 24, 2305
[22] Tian W, Zhang C, Zhai T Y, et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched Zns-Zno heterostructure nanofilms [J]. Advanced Materials, 2014, 26(19): 3088
[23] Zhao Z F, Jiang C Y, Pu X, et al. Robust Pb2+ sensor based on flexible ZnO/ZnS core-shell nanoarrays [J]. Applied Physics Letters, 2016, 108(15): 153104
[24] Hameed haja A S, Karthikeyan C, Sasikumar S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method [J]. Journal of Materials Chemistry B, 2013, 1(43): 5950
[25] Wang X T, Lv R, Wang K. Synthesis of ZnO@ZnS-Bi2S3 core-shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance [J]. Journal of Materials Chemistry A, 2014, 2(22): 8304
[26] Chen P, Gu L, Cao X B. From single ZnO multipods to heterostructured ZnO/ZnS, ZnO/ZnSe, ZnO/Bi2S3 and ZnO/Cu2S multipods: controlled synthesis and tunable optical and photoelectrochemical properties [J]. Crystengcomm. 2010, 12(11): 3950
[27] Qi X M, Peng W B, Zhao X L, et al. Photoconductive UV detector based on high-resistance ZnO thin film [J]. Acta Physica Sinica, 2015, 64(19): 381
[28] Lo S S, Mirkovic T, Chuang C H, et al. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Cheminform, 2011, 23(2): 180
[29] Yang Z S, Chen C Y, Roy P, et al. Quantum dot-sensitized solar cells incorporating nanomaterials [J]. Chemical Communications. 2011, 47(34): 9561
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.