|
|
自供能ZnO/ZnS异质结紫外探测器的性能研究 |
胡轶1,2,徐思伟2,李想2,贾杰2,桑丹丹3,高世勇2( ) |
1. 太原学院物理系 太原 030032 2. 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 3. 聊城大学物理科学与信息工程学院 山东省光通信科学与技术重点实验室 聊城 252000 |
|
Performance of Self-Powered UV Photodetector Based on ZnO/ZnS Heterojunction |
Yi HU1,2,Siwei XU2,Xiang LI2,Jie JIA2,Dandan SANG3,Shiyong GAO2( ) |
1. Department of Physics, Taiyuan University, Taiyuan 030032, China 2. School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150001, China 3. School of Physical Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252000, China |
引用本文:
胡轶,徐思伟,李想,贾杰,桑丹丹,高世勇. 自供能ZnO/ZnS异质结紫外探测器的性能研究[J]. 材料研究学报, 2019, 33(7): 523-529.
Yi HU,
Siwei XU,
Xiang LI,
Jie JIA,
Dandan SANG,
Shiyong GAO.
Performance of Self-Powered UV Photodetector Based on ZnO/ZnS Heterojunction[J]. Chinese Journal of Materials Research, 2019, 33(7): 523-529.
[1] | Wang X D, Song J H, Summers C J, et al. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications [J]. Journal of Physical Chemistry B, 2006, 110(15): 7720 | [2] | Suo B, Wu W W, Qin Y, et al. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates [J]. Advanced Functional Materials, 2011, 21(23): 4464 | [3] | Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chinese Journal of Materials Research. 2017, 31(8): 619 | [4] | Fang X M, Zeng Z, Gao S Y, et al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-likearrays of ZnO [J]. Chinese Journal of Materials Research, 2018, 32(12): 945 | [5] | Wang Z L. The new field of nanopiezotronics [J]. Materials Today, 2007, 10(5): 20 | [6] | Bai Z K, Xie C S, Zhang S P, et al. Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method [J]. Sensors and Actuators B: Chemical, 2010, 151(1): 107 | [7] | Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chinese Journal of Materials Research, 2015, 29(03): 213 | [8] | Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312(5771): 242 | [9] | Cong R M, Yu H Q, Luo Y J, et al. Layer-by-layer construction and photocatalytic properties of Fe3O4/PAMAM/ZnO/TiO2 core-shell nanoparticles [J]. Chinese Journal of Materials Research, 2018, 32(10): 759 | [10] | Pradhan B, Batabyal S K, Pal A J. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells [J]. Solar Energy Materials & Solar Cells, 2007, 91(9): 769 | [11] | Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation [J]. Advanced Functional Materials, 2003, 13(1): 9 | [12] | Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J]. Chinese Journal of Materials Research, 2015, 29(7): 529 | [13] | Ahn S E, Ji H J, Kim K, et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire [J]. Applied Physics Letters, 2007, 90(15): 153106 | [14] | Liu K W, Sakurai M, Liao M Y, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles [J]. Journal of Physical Chemistry C, 2010, 114(46): 19835 | [15] | Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69 | [16] | Manekkathodi A, Lu M Y, Wang C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics [J]. Advanced Materials, 2010, 22(36): 4059 | [17] | Mohammed A F, Salah W R. Synthesis of ZnS quantum dots for QDs-LED hybrid device with different cathode materials [J]. Journal of Physics: Conference Series. 2018(1032): 012010 | [18] | Wang K, Chen J J, Zeng Z M, et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays [J]. Applied Physics Letters, 2010, 96(12): 123105 | [19] | Schrier J, Demchenko D O, Wang L. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications [J]. Nano Letters, 2007, 7(8): 2377 | [20] | Rai S C, Wang K, Ding Y, et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array [J]. Acs Nano, 2015, 9(6): 6419 | [21] | Hu L F, Yan J, Liao M Y, et al. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt [J]. Advanced Materials, 2012, 24, 2305 | [22] | Tian W, Zhang C, Zhai T Y, et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched Zns-Zno heterostructure nanofilms [J]. Advanced Materials, 2014, 26(19): 3088 | [23] | Zhao Z F, Jiang C Y, Pu X, et al. Robust Pb2+ sensor based on flexible ZnO/ZnS core-shell nanoarrays [J]. Applied Physics Letters, 2016, 108(15): 153104 | [24] | Hameed haja A S, Karthikeyan C, Sasikumar S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method [J]. Journal of Materials Chemistry B, 2013, 1(43): 5950 | [25] | Wang X T, Lv R, Wang K. Synthesis of ZnO@ZnS-Bi2S3 core-shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance [J]. Journal of Materials Chemistry A, 2014, 2(22): 8304 | [26] | Chen P, Gu L, Cao X B. From single ZnO multipods to heterostructured ZnO/ZnS, ZnO/ZnSe, ZnO/Bi2S3 and ZnO/Cu2S multipods: controlled synthesis and tunable optical and photoelectrochemical properties [J]. Crystengcomm. 2010, 12(11): 3950 | [27] | Qi X M, Peng W B, Zhao X L, et al. Photoconductive UV detector based on high-resistance ZnO thin film [J]. Acta Physica Sinica, 2015, 64(19): 381 | [28] | Lo S S, Mirkovic T, Chuang C H, et al. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Cheminform, 2011, 23(2): 180 | [29] | Yang Z S, Chen C Y, Roy P, et al. Quantum dot-sensitized solar cells incorporating nanomaterials [J]. Chemical Communications. 2011, 47(34): 9561 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|