Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 530-536    DOI: 10.11901/1005.3093.2018.639
  研究论文 本期目录 | 过刊浏览 |
碳包覆改性二氧化锰电极材料的制备和性能
潘双,庄雪,王冰(),唐立丹,刘亮,齐锦刚
辽宁工业大学材料科学与工程学院 锦州 121000
Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials
Shuang PAN,Xue ZHUANG,Bing WANG(),Lidan TANG,Liang LIU,Jingang QI
School of Materials Science and Engineering, Liaoning of Technology, Jinzhou 121000, China
引用本文:

潘双,庄雪,王冰,唐立丹,刘亮,齐锦刚. 碳包覆改性二氧化锰电极材料的制备和性能[J]. 材料研究学报, 2019, 33(7): 530-536.
Shuang PAN, Xue ZHUANG, Bing WANG, Lidan TANG, Liang LIU, Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. Chinese Journal of Materials Research, 2019, 33(7): 530-536.

全文: PDF(6664 KB)   HTML
摘要: 

先以高锰酸钾(KMnO4)和硫酸锰(MnSO4·H2O)为原料用电脉冲辅助氧化还原法制备二氧化锰(MnO2)粉末,再以葡萄糖(C6H12O6)为碳源用液相烧结法制备出不同碳包覆量的MnO2/C复合材料,研究了碳包覆量对材料的形貌、结构和电化学性能的影响。结果表明,碳的加入使MnO2晶型由γ型转变为α型,葡萄糖加热分解后生成无定型的碳覆着在二氧化锰颗粒的表面,抑制了晶粒生长而使晶粒细化。充放电测试结果表明,在葡萄糖浓度为1.5 g/L、电流密度为2 A·g-1条件下二氧化锰的比电容为722.2 F·g-1。与包覆二氧化锰前比较,包覆后比电容提高了64.6%。经过4000圈充放电循环后电容保持率为74.72%,表现出良好的电容特性和循环性能。

关键词 复合材料碳包覆二氧化锰电脉冲辅助氧化还原法/液相烧结法机理分析    
Abstract

Manganese dioxide powders were firstly prepared via electric pulse assisted redox method with KMnO4 and MnSO4 as raw material, then MnO2/C composite materials coated with different amounts of carbon were fabricated via liquid phase sintering with glucose as a carbon source. The effect of amount of coated carbon on the morphology, structure and electrochemical properties of the MnO2/C materials were investigated. Results show that the coated carbon could induce the transformation of crystallographic structure of MnO2 from γ-type into α-type. Under heating conditions glucose decomposed and coated on the surface of MnO2 particles, which could inhibit the grain growth and thus refine grains. When the preparation with the process parameters: glucose concentration was 1.5 g/L and the current density was 2 A·g-1, the prepared MnO2/C material presented the specific capacitance of MnO2 of 722.2 F·g-1, in other words, the carbon coating could increase the specific capacitance by 80%, in comparison with that of the blank ones. Furthermore, after 4000 charge-discharge cycles, the capacitance retention rate could still maintain 74.72%, displayed good electrochemical performance and cycling performance.

Key wordscomposite material    carbon coated manganese dioxide    electric pulse assisted redox/liquid sintering method    electrochemical performance    mechanism analysis
收稿日期: 2018-11-05     
ZTFLH:  TQ426  
基金资助:辽宁自然科学基金(2015020215);辽宁省高校优秀人才项目(LJQ2015050);辽宁教育厅一般项目(L2035236)
作者简介: 潘 双,女,1995年生,硕士生
图1  包覆前后MnO2粉末的XRD图谱
图2  碳包覆二氧化锰粉末的场发射扫描电子显微镜(FESEM)图和透镜(TEM)照片
图3  MnO2和MnO2/C复合材料的循环伏安(CV)曲线
图4  MnO2和MnO2/C复合材料的恒流充放电(GCD)曲线
图5  C-0和C-1.5复合材料的循环性能曲线
图6  C-0和C-1.5的EIS曲线
图7  包覆前后电解液与活性材料的反应路径
[1] Xing B L, Huang G, Zhan L J, et al. Research status and prospects of supercapacitor electrode materials [J]. Matererial News, 2012, 26(10): 21
[1] (刑宝林, 黄光, 谌伦建等. 超级电容器电极材料的研究现状与展望 [J]. 材料导报, 2012, 26(10): 21)
[2] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews, 2014, 45(26): 3303
[3] Borysiewicz M. A., Ekielski M., Ogorza?ek Z., et al. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures [J]. Nanoscale, 2017, 9(22): 7577
[4] Xia X H, Chao D L, Zhang Y Q, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage [J]. Small, 2016, 12(22): 3048
[5] Cao J, Li X, Wang Y, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors [J]. Power Source, 2015, 293(20): 657
[6] Dubal S V, Patil G. Polyaniline-polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors [J]. Journal of Alloys and Compounds, 2013, 552(5): 240
[7] Kazemi S, Kiani M, Mohamadi R, et al. Metal-polyaniline nanofibre composite for supercapacitor applications [J]. Bulletin of Materials Science, 2014, 37(5): 1001
[8] Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes [J]. Chemical Society Reviews, 2011, 40(3): 1697
[9] Zhao Y, Ran W, He J, et al. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability [J]. Small, 2015, 11(11): 1310
[10] Huang M, Mi R, Liu H, et al. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binderfree supercapacitor electrodes [J]. Power Source, 2014, 269(10): 760
[11] Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance [J]. Advanced Materials, 2013, 25(24): 3302
[12] Li S, Qi L, Lu L, et al. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutralaqueous electrolytes [J]. RSC Advanced, 2012, 2(8): 3298
[13] Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage [J]. Advanced Materials, 2012, 24(38): 5166
[14] Machefaux E, Verbaere A, Guyomard D. Preparation of nanowires of M substituted manganese dioxides (M=Al, Co, Ni) by the electrochemical hydrothermal method [J]. Journal of Physics and Chemistry of Solids, 2013, 67(5-6): 1315
[15] Chun K Y, Ryu C W, Kim K B. Onset mechanism of Jahn-Teller distortion in 4V LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M=Co, Ni)coating [J]. Journal of the Electrochemical Society, 2005, 152(4): A791
[16] Sun M, Tie J, Cheng G, et al. In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors [J]. Materials Chemical A, 2015, 3(1): 1730
[17] Su X, Yu L, Cheng G, et al. High-performance α-MnO2 nanowire electrode for supercapacitor [J]. Applied Energy, 2015, 153(1): 94
[18] Yang M Y, Ni P, Li Y, et al. Synthesis and electrochemical performance of β-MnO2 with semitubular morphology [J]. Materials Chemical Physical, 2010, 124(1): 155
[19] Kim Y J, Yang C M, Park K C, et al. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles [J]. Chemical Sustainable Chemical, 2012, 5(3): 535
[20] Cao F F, Wu X L, Xin S, et al. Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5V rechargeable Li ion batteries containing LiFePO4-C cathode [J]. Physical Chemistry C, 2010, 114(22): 10308
[21] Liu Y, Ai C C, Hu Y, et al. Research progress of supercapacitor carbon-coated metal oxide electrode materials [J]. Chemical Lindustry and Engineering Progress, 2013, 32(2): 1849
[21] (刘 洋, 艾常春, 胡 意等. 碳包覆金属氧化物作为超级电容器电极材料的研究进展 [J]. 化工进展, 2013, 32(2): 1849)
[22] YANG J, WANG B F, WANG K, et al. Si/C composites for high capacity lithium storage materials [J]. Electrochemical Solid-State Letterr, 2003, 6(8): A154
[23] Pan S, Wang B, Ma Z J, et al. Preparation and electrochemical performance of Al-doped manganese dioxide nanowires [J]. Piezoelectrics & Acoustooptics, 2019, 41(01): 72
[23] (潘 双, 王 冰, 马泽军等. 铝掺杂二氧化锰纳米线的制备及其电化学性能 [J]. 压电与声光, 2019, 41(01): 72)
[24] Jin E M, Lim J G, Jeong S M. Facile synthesis of graphene-wrapped CNT-MnO2 nanocomposites for asymmetric electrochemical capacitors [J]. Journal of Industrial and Engineering Chemistry, 2017, 54(25): 421
[25] Li J, Ma J, Gao Y, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes [J]. Materials Science and Engineering A, 2008, 490(1): 452
[26] Zhou X. In vitro degradation characteristic of carbon fiber reinforced polylactide (C/PLA) composite under pulsed electoimagnetic field [D]. Jinzhou: Liaoning University of Technology, 2016
[26] (周 想. 脉冲电磁场作用下碳纤维增强聚乳酸(C/PLA)复合材料的降解特性 [D]. 锦州: 辽宁工业大学, 2016)
[27] Zhang D. Effects and Mechanism of LaxSr1-xCryNi1-yO3 Powders' Exsolution Characteristics under Pulsed Current [D]. Jinzhou: Liaoning University of Technology, 2018
[27] (张 迪. 脉冲电流对LaxSr1-xCryNi1-yO3溶出特性的影响及其作用机理 [D]. 锦州: 辽宁工业大学, 2018)
[28] Fang L. The Preparation and Eelectrochemical Performance of MnO2 Assisted with Pulse Electromagnetic Field [D]. Jinzhou: Liaoning University of Technology, 2018
[28] (方 琳. 脉冲电磁场辅助制备二氧化锰及其电化学性能研究 [D]. 锦州: 辽宁工业大学, 2018)
[29] Liu K Y, Zhang Y, Zhang W, et al. Charge-discharge process of MnO2 supercapacitor [J]. Transactions of Nonfcrrous Metals Society of China, 2007, 17(3): 649
[30] Zhang X, Sun X, Zhang H, et al. Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve(OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application [J]. Electrochimica Acta, 2014, 132(03): 315
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.