Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 490-498    DOI: 10.11901/1005.3093.2023.418
  研究论文 本期目录 | 过刊浏览 |
高温合金基于二次K熵的疲劳扩展声发射特征
景婷1, 梁哲铭2, 于洋1()
1.沈阳工业大学信息科学与工程学院 沈阳 110870
2.沈阳飞机设计研究所 沈阳 110035
Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy
JING Ting1, LIANG Zheming2, YU Yang1()
1.School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shenyang Aircraft Design & Research Institute, Shenyang 110035, China
引用本文:

景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
Ting JING, Zheming LIANG, Yang YU. Acoustic Emission Characteristics of Fatigue Propagation of Superalloy Based on Quadratic K-entropy[J]. Chinese Journal of Materials Research, 2024, 38(7): 490-498.

全文: PDF(3024 KB)   HTML
摘要: 

用高灵敏声发射技术在线监测金属疲劳裂纹的扩展,研究了高温合金基于二次K熵的疲劳扩展声发射特征,提出二次K熵方法并将计算结果作为分析这种不确定性的新参数。研究结果表明,金属疲劳扩展过程中的声发射信号具有混沌特性,对其二次K熵处理结果表明其趋势变化与疲劳裂纹扩展过程有更为清晰的对应关系,且能提前得到更为精确的疲劳断裂信息,提前率达到8%以上,为预测疲劳断裂提供了依据。

关键词 材料失效与保护疲劳裂纹扩展混沌特性声发射    
Abstract

Metal fatigue crack growth monitoring has been a hot topic in the study of material properties. In this study, high sensitive acoustic emission technology is used to conduct online monitoring of metal fatigue crack growth. A quadratic K-entropy method is proposed for the first time, the calculation results of which are used as a new parameter to analyze this uncertain process. The experimental results indicate that the acoustic emission signal in metal fatigue growth shows chaotic characteristics, and its trend has a clear corresponding relationship with the process of fatigue crack growth after the quadratic K-entropy treatment, and the fatigue fracture information can be obtained in advance. The advance rate is more than 8% of the whole process, which effectively provides a basis for the prediction of fatigue fracture.

Key wordsmaterials failure and protection    fatigue crack growth    chaotic characteristic    acoustic emission
收稿日期: 2023-08-25     
ZTFLH:  TG113.25+5  
基金资助:中国航空发动机集团应用创新项目(630010504)
通讯作者: 于洋,教授,yuy@sut.edu.cn,研究方向装备故障监测与健康管理
Corresponding author: YU Yang, Tel: 13555816159, E-mail: yuy@sut.edu.cn
作者简介: 景 婷,女,1991年生,博士生
图1  声发射参数的定义
图2  疲劳试样的尺寸
图3  Instron-300DX静态液压万能试验机及试验设备的描述
图4  声发射采集系统示意图
图5  高温合金试棒的断裂状态
图6  通道1的声发射信号参数
图7  通道2的声发射信号参数
图8  通道3的声发射信号参数
ChannelRise timeCountEnergyAmplitudeSignal strengthAbsolute energy
Channel 12.29746.99482.27840.02372.656115.0792
Channel 22.545721.204236.68780.036433.7580460.7285
Channel 32.35255.90172.58100.02712.611727.8711
表1  不同通道声发射参数的变异系数
图9  通道1和通道3的声发射绝对能量的放大图
图10  通道1和通道3绝对能量的一次K熵计算结果
图11  通道1和通道3绝对能量的二次K熵计算结果
图12  通道1和通道3二次K熵的最高点与声发射参数突跃点位置的对比
[1] Wu Y L, Xuan H J. Initiation and propagation characteristics of multi-source fatigue crack in superalloy disk [J]. J. Northwest. Polytech. Univ., 2020, 38(6): 1291
[1] 吴英龙, 宣海军. 高温合金盘多源疲劳裂纹萌生及扩展特征 [J]. 西北工业大学学报, 2020, 38(6): 1291
[2] Zhou J, Mao H L, Huang Z F, et al. Acoustic emission technique for the detecting of metal fatigue fracture [J]. China Meas. Technol., 2007, 33(3): 7
[2] 周 洁, 毛汉领, 黄振峰 等. 金属疲劳断裂的声发射检测技术 [J]. 中国测试技术, 2007, 33(3): 7
[3] Chai M Y, Duan Q, Zhang Z X. Application of acoustic emission technology in study of fatigue fracture of metals [J]. Chem. Eng. Mach., 2015, 42(6): 735
[3] 柴孟瑜, 段 权, 张早校. 声发射技术在金属疲劳断裂研究中的应用 [J]. 化工机械, 2015, 42(6): 735
[4] Karimian S F, Modarres M, Bruck H A. A new method for detecting fatigue crack initiation in aluminum alloy using acoustic emission waveform information entropy [J]. Eng. Fract. Mech., 2020, 223: 106771
[5] Yu J G, Ziehl P, Zárate B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission [J]. J. Constr. Steel Res., 2011, 67(8): 1254
[6] Kohn D H, Ducheyne P, Awerbuch J. Acoustic emission during fatigue of Ti-6Al-4V: incipient fatigue crack detection limits and generalized data analysis methodology [J]. J. Mater. Sci., 1992, 27: 3133
[7] Bassim M N, Lawrence S S, Liu C D. Detection of the onset of fatigue crack growth in rail steels using acoustic emission [J]. Eng. Fract. Mech., 1994, 47(2): 207
[8] Huang Z F, Liu Y J, Mao H Y, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension [J]. J. Vib. Shock, 2017, 36(15): 210
[8] 黄振峰, 刘永坚, 毛汉颖 等. 基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析 [J]. 振动与冲击, 2017, 36(15): 210
[9] Chai M Y, Zhang Z X, Duan Q, et al. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy [J]. Int. J. Fatigue, 2018, 109: 145
[10] Berkovits A, Fang D N. Study of fatigue crack characteristics by acoustic emission [J]. Eng. Fract. Mech., 1995, 51(3): 401
[11] Chai M Y, Zhang Z X, Duan Q. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring [J]. Mech. Syst. Signal Process., 2018, 100: 617
[12] Ono K, Gallego A. Research and applications of AE on advanced composites [J]. J. Acoust. Emiss., 2012, 30: 180
[13] Behnia A, Chai H K, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission [J]. Constr. Build. Mater., 2014, 65: 282
[14] Chai M Y, Zhang J, Zhang Z X, et al. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds [J]. Appl. Acoust., 2017, 126: 101
[15] Grosse C, Ohtsu M. Acoustic Emission Testing [M]. Berlin, Heidelberg: Springer, 2008
[16] Wang Z J, Hu G H, Yu H R, et al. Fatigue crack growth of Q345B using acoustic emission technique [J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2016, 30(4): 99
[16] 王振京, 胡国华, 喻海荣 等. 基于声发射技术的Q345B疲劳裂纹扩展研究 [J]. 南昌航空大学学报: 自然科学版, 2016, 30(4): 99
[17] Ennaceur C, Laksimi A, Hervé C, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. Int. J. Pressure Vessels Pip., 2006, 83(3): 197
[18] Warren A W, Guo Y B. Acoustic emission monitoring for rolling contact fatigue of superfinished ground surfaces [J]. Int. J. Fatigue, 2007, 29(4): 603
[19] Yang M W. Acoustic Emission Testing [M]. Beijing: China Machine Press, 2010
[19] 杨明纬. 声发射检测 [M]. 北京: 机械工业出版社, 2010
[20] Ning X B. Application research of acoustic emission technology in the detection of composite damage [D]. Guanghan: Civil Aviation Flight University of China, 2014
[20] 宁小波. 声发射技术在复合材料损伤检测中的应用研究 [D]. 广汉: 中国民用航空飞行学院, 2014
[21] Long X J, Li Q F, He C H, et al. Experimental study on the monitoring of crane steel beam fatigue characteristics with acoustic emission technology [J]. China Meas. Test, 2015, 41(9): 11
[21] 龙小江, 李秋锋, 何才厚 等. 起重机钢梁疲劳特性声发射监测实验研究 [J]. 中国测试, 2015, 41(9): 11
[22] Martin C A, Van Way C B, Lockyer A J, et al. Acoustic emission testing on an F/A-18 E/F titanium bulkhead [A]. Proceedings of SPIE 2444, Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation [C]. San Diego: SPIE, 1995: 204
[23] Hamstad M A, McColskey J D. Wideband and narrowband acoustic emission waveforms from extraneous sources during fatigue of steel samples [J]. J. Acoust. Emiss., 1997, 15(1-4): 1
[24] Keshtgar A, Sauerbrunn C M, Modarres M. Structural reliability prediction using acoustic emission-based modeling of fatigue crack growth [J]. Appl. Sci., 2018, 8(8): 1225
[25] Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals [J]. Nondestr. Test., 2002, 24(2): 72
[25] 沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法 [J]. 无损检测, 2002, 24(2): 72
[26] Pomponi E, Vinogradov A. A real-time approach to acoustic emission clustering [J]. Mech. Syst. Signal Process., 2013, 40: 791
[27] Morton T M, Smith S, Harrington R M. Effect of loading variables on the acoustic emissions of fatigue-crack growth [J]. Exp. Mech., 1974, 14: 208
[28] Han Z Y, Luo H Y, Cao J W, et al. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds [J]. Mater. Sci. Eng., 2011, 528A: 7751
[29] Han Z Y, Luo H Y, Zhang Y B, et al. Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel [J]. Mater. Sci. Eng., 2013, 559A: 534
[30] Li L F, Zhang Z, Shen G T. Influence of grain size on fatigue crack propagation and acoustic emission features in commercial-purity zirconium [J]. Mater. Sci. Eng., 2015, 636A: 35
[31] Moorthy V, Jayakumar T, Raj B. Influence of micro structure on acoustic emission behavior during Stage 2 fatigue crack growth in solution annealed, thermally aged and weld specimens of AISI type 316 stainless steel [J]. Mater. Sci. Eng., 1996, 212A: 273
[32] Yu J G, Ziehl P, Matta F, et al. Acoustic emission detection of fatigue damage in cruciform welded joints [J]. J. Constr. Steel Res., 2013, 86: 85
[33] Nemati N, Metrovich B, Nanni A. Acoustic emission assessment of through-thickness fatigue crack growth in steel members [J]. Adv. Struct. Eng., 2015, 18(2): 269
[34] Aggelis D G, Kordatos E Z, Matikas T E. Acoustic emission for fatigue damage characterization in metal plates [J]. Mech. Res. Commun., 2011, 38: 106
[35] Bourchak M, Farrow I R, Bond I P, et al. Acoustic emission energy as a fatigue damage parameter for CFRP composites [J]. Int. J. Fatigue, 2007, 29: 457
[36] Gagar D, Foote P, Irving P E. Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: implications for structural health monitoring [J]. Int. J. Fatigue, 2015, 81: 117
[37] Biancolini M E, Brutti C, Paparo G, et al. Fatigue cracks nucleation on steel, Acoustic emission and fractal analysis [J]. Int. J. Fatigue, 2006, 28: 1820
[38] Rabiei M, Modarres M. Quantitative methods for structural health management using in situ acoustic emission monitoring [J]. Int. J. Fatigue, 2013, 49: 81
[39] Rabiei M. A Bayesian framework for structural health management using acoustic emission monitoring and periodic inspections [D]. College Park: University of Maryland, 2011
[40] Keshtgar A, Modarres M. Probabilistic approach for nondestructive detection of fatigue crack initiation and sizing [J]. Int. J. Prognost. Health Manage., 2016, 7(2): 19
[41] Zárate B A, Caicedo J M, Yu J G, et al. Deterministic and probabilistic fatigue prognosis of cracked specimens using acoustic emissions [J]. J. Constr. Steel Res., 2012, 76: 68
[42] Yao X S, Zhang Y X, Ming T F, et al. Application of chaos-based weak signal detection approach to the acoustic emission signal of gear crack via duffing oscillator [J]. J. Wuhan Univ. Technol. (Trans. Sci. Eng.), 2009, 33(2): 318
[42] 姚晓山, 张永祥, 明廷锋 等. 混沌弱信号检测法在齿轮裂纹声发射检测中的应用 [J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(2): 318
[43] Chai M Y, Duan Q, Zhang Z X. Acoustic emission study of fatigue crack propagation in Q345R [J]. Chin. J. Eng., 2015, 37(12): 1588
[43] 柴孟瑜, 段 权, 张早校. Q345R疲劳裂纹扩展过程的声发射研究 [J]. 工程科学学报, 2015, 37(12): 1588
[44] Zhu R H, Gang T. Fatigue crack propagation of aluminum alloy based on acoustic emission monitoring [J]. Trans. China Weld. Inst., 2013, 34(3): 29
[44] 朱荣华, 刚 铁. 铝合金疲劳裂纹扩展声发射监测 [J]. 焊接学报, 2013, 34(3): 29
[45] Yu J G, Ziehl P. Stable and unstable fatigue prediction for A572 structural steel using acoustic emission [J]. J. Constr. Steel Res., 2012, 77: 173
[46] Han W L, Xi J H. Chaotic characteristics extracting and trend analysis on acoustic emission signal of tool condition [J]. J. Shenyang Inst. Aeronaut. Eng., 2010, 27(4): 74
[46] 韩文兰, 席剑辉. 刀具声发射信号混沌特征提取及趋势分析 [J]. 沈阳航空工业学院学报, 2010, 27(4): 74
[47] Bukkapatnam S T S, Kumara S R T, Lakhtakia A. Analysis of acoustic emission signals in machining [J]. J. Manuf. Sci. Eng., 1999, 121(4): 568
[48] Jiang X X, Cao J Y, Li R, et al. Fault diagnosis of air compressor based on AE signals and correlation dimension [J]. J. Mech. Strength, 2011, 33(6): 803
[48] 蒋旭鑫, 曹军义, 李 锐 等. 基于声发射和关联维数的空气压缩机故障诊断技术研究 [J]. 机械强度, 2011, 33(6): 803
[49] Guan S, Peng C. Chaotic characteristic analysis of tool wear acoustic emission signal [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(11): 60
[50] Cheng X M, Hu F, Deng A D, et al. Characteristic analysis and localization of acoustic emission source based on chaos theory [J]. China Mech. Eng., 2011, 22(9): 1013
[50] 成新民, 胡 峰, 邓艾东 等. 基于混沌理论的碰摩声发射特征分析与源定位 [J]. 中国机械工程, 2011, 22(9): 1013
[51] Liu Z, Jiang Y, Zou S Y, et al. Chaos analysis on acoustic emission signals of Francis turbine under cavitation [J]. J. Chin. Soc. Power Eng., 2021, 41(7): 609
[51] 刘 忠, 蒋 盈, 邹淑云 等. 混流式水轮机空化声发射信号的混沌特性分析 [J]. 动力工程学报, 2021, 41(7): 609
[52] Chen Y, Yang J R, Jin R X, et al. Experimental Study on acoustic emission signals during glunting process of grinding wheels based on chaos theory [J]. Noise Vib. Control, 2022, 42(5): 148
[52] 陈 芸, 杨嘉睿, 金容鑫 等. 基于混沌理论砂轮磨钝过程声发射信号试验研究 [J]. 噪声与振动控制, 2022, 42(5): 148
[53] Mao X D, Yuan H Q, Sun H G. Relevancy of correlation dimension and Kolmogorov entropy in state of gearbox discrimination [J]. Mach. Tool Hydraul., 2015, 43(13): 189
[53] 毛向东, 袁惠群, 孙华刚. 关联维数和Kolmogorov熵在变速箱状态判别中的关联性 [J]. 机床与液压, 2015, 43(13): 189
[54] Bai L, Liang P. Kolmogorov entropy diagnosis for vibration faults of turbine rotor based on wavelet packet filtering [J]. J. Vib. Shock, 2008, 27(5): 148
[54] 白 蕾, 梁 平. 基于小波包滤波的汽轮机转子振动故障的Kolmogorov熵诊断 [J]. 振动与冲击, 2008, 27(5): 148
[55] Yang S X, Wang W J. Kolmogorov entropy and its application to the diagnosis of mechanical faults [J]. Mech. Sci. Technol., 2000, 19(1): 6
[55] 杨世锡, 汪慰军. 柯尔莫哥洛夫熵及其在故障诊断中的应用 [J]. 机械科学与技术, 2000, 19(1): 6
[56] Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal [J]. Phys. Rev., 1983, 28A(4) : 2591
[57] Schouten J C, Takens F, van den Bleek C M. Maximum-likelihood estimation of the entropy of an attractor [J]. Phys. Rev., 1994, 49E(1) : 126
[58] Daw C S, Thomas J F, Richards G A, et al. Chaos in thermal pulse combustion [J]. Chaos, 1995, 5(4): 662
pmid: 12780223
[1] 崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
[2] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[3] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[4] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[5] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[6] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[7] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[8] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[9] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[10] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[11] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[14] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.