|
|
激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为 |
李飞阳1, 刘志红1, 乔岩欣1, 杨兰兰1, 卢道华2, 汤雁冰2( ) |
1.江苏科技大学材料科学与工程学院 镇江 212003 2.江苏科技大学海洋装备研究院 镇江 212003 |
|
Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution |
LI Feiyang1, LIU Zhihong1, QIAO Yanxin1, YANG Lanlan1, LU Daohua2, TANG Yanbing2( ) |
1.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
引用本文:
李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
Feiyang LI,
Zhihong LIU,
Yanxin QIAO,
Lanlan YANG,
Daohua LU,
Yanbing TANG.
Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution[J]. Chinese Journal of Materials Research, 2024, 38(3): 221-231.
1 |
Bacciaglla A, Ceruti A, Liverani A, et al. Towards large parts manufacturing in additive technologies for aerospace and automotive applications [J]. Procedia Computer Science, 2022, 200: 1113
doi: 10.1016/j.procs.2022.01.311
|
2 |
Melenka G W, Cheung B K O, Schofield J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3d printed structures [J]. Compos. Struct., 2016, 153: 866
doi: 10.1016/j.compstruct.2016.07.018
|
3 |
Daminabo S C, Goel S, Grammatikos S A, et al. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems [J]. Mater. Today., Chem., 2020, 16: 100248
|
4 |
Guo Q, Zhao C, Qu M, et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process [J]. Addit. Manuf., 2019, 28: 600
|
5 |
Li R, Niu P, Yuan T. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy. Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
|
6 |
Lodhi M J K, Iams A D, Sikora E, et al. Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel [J]. Corros. Sci., 2022, 203: 110354
doi: 10.1016/j.corsci.2022.110354
|
7 |
Zhang Z, Yuan X, Zhao Z, et al. Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought [J]. J. Electroanal. Chem., 2021, 894: 115351
doi: 10.1016/j.jelechem.2021.115351
|
8 |
Zhao C L, Bai Y, Zhang Y, et al. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel [J]. Mater. Design., 2021, 209: 109999
|
9 |
Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
|
10 |
Laleh M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
|
11 |
Trelewicz J R, Halada G P, Donaldson O K, et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel [J]. Jom-Us., 2016, 68(7): 764
|
12 |
Geenen K, Roettger A, Theisen W, et al. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting [J]. Mater. Corros., 2017, 68(7): 764
|
13 |
De Souza Silva E M F, Da Fonseca G S, Ferreira E A, et al. Microstructural and selective dissolution analysis of 316L austenitic stainless steel [J]. J. Mater. Res. Technol. J, 2021, 15: 4317
doi: 10.1016/j.jmrt.2021.10.009
|
14 |
Ha H Y, Park C J, Kwon H S, et al. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49(3): 1266
doi: 10.1016/j.corsci.2006.08.017
|
15 |
Qu H, Li J, Zhang F, et al. Anisotropic cellular structure and texture microstructure of 316L stainless steel fabricated by selective laser melting via rotation scanning strategy [J]. Mater. Design., 2022, 215: 110454
|
16 |
Depionoy S. Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel [J]. Materialia, 2022, 24: 101472
doi: 10.1016/j.mtla.2022.101472
|
17 |
Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
|
18 |
El Shams, Din A M, Paul N J, et al. Oxide film thickening on the surface of metals in aqueous solutions: A critique of the theory of open-circuit potential transients [J]. Thin Solid Films, 1990, 189(2): 205
doi: 10.1016/0040-6090(90)90449-N
|
19 |
Fattah Alhosseini A, Saatchi A, Golozar M A, et al. The transpassive dissolution mechanism of 316L stainless steel [J], Electrochim. Acta., 2009, 54(13): 3645
doi: 10.1016/j.electacta.2009.01.040
|
20 |
Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
|
21 |
Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J], J. Electroanal. Chem., 1981, 124(1): 247
doi: 10.1016/S0022-0728(81)80302-6
|
22 |
Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
doi: 10.1016/j.corsci.2018.09.010
|
23 |
Li T, Liu L, Zhang B, et al. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles [J]. Corros. Sci., 2014, 85: 331
doi: 10.1016/j.corsci.2014.04.039
|
24 |
Pan C, Liu L, Li Y, et al. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques [J]. Electrochim. Acta., 2011, 56: 7740
doi: 10.1016/j.electacta.2011.05.106
|
25 |
Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum., 2022, 202: 111216
doi: 10.1016/j.vacuum.2022.111216
|
26 |
Hakiki N E, Belo M D C, Simoes A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145(11): 3821
doi: 10.1149/1.1838880
|
27 |
Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46(6): 1479
doi: 10.1016/j.corsci.2003.09.022
|
28 |
Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179:109146
doi: 10.1016/j.corsci.2020.109146
|
29 |
Azumi K, Ohstuka T, Sato N, et al. Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions [J]. J. Electrochem. Soc., 1987, 134(6):1352
doi: 10.1149/1.2100672
|
30 |
Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47(3): 581
doi: 10.1016/j.corsci.2004.07.002
|
31 |
Liu L, Li Y, Wang F, et al. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta., 2007, 52(7): 2392
doi: 10.1016/j.electacta.2006.08.070
|
32 |
Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy [J]. Corros. Sci., 2003, 45(4): 817
doi: 10.1016/S0010-938X(02)00131-2
|
33 |
Gebert A, Wolff U, John A, et al. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes [J]. Mat. Sci. Eng A-Struct., 2001, 299(1): 125
doi: 10.1016/S0921-5093(00)01401-5
|
34 |
Yue X, Yang Z, Huang L, et al. Passivation characteristics of ultra-thin 316L foil in NaCl solutions [J]. J. Mater. Sci. Technol., 2022, 127:192
doi: 10.1016/j.jmst.2022.01.043
|
35 |
Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50(3): 780
doi: 10.1016/j.corsci.2007.11.004
|
36 |
Luo H, Su H, Li B, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment [J]. Appl. Surf. Sci., 2018, 439: 232
doi: 10.1016/j.apsusc.2017.12.243
|
37 |
Cheng H, Luo H, Wang X, et al. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment [J]. Mater. Chem. Phys., 2022, 292: 126837
doi: 10.1016/j.matchemphys.2022.126837
|
38 |
Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49(5): 2198
doi: 10.1016/j.corsci.2006.10.032
|
39 |
Li J, Wang Q, Yang Y, et al. Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation [J]. J. Electrochem. Soc., 2019, 166(13): 365
|
40 |
Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels [J]. Mater. Chem. Phys., 2010, 122(1): 194
doi: 10.1016/j.matchemphys.2010.02.033
|
41 |
Liu L, Li Y, Wang F. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta., 2007, 52(25): 7193
doi: 10.1016/j.electacta.2007.05.043
|
42 |
Abreu C M, Cristobal M J, Losada R, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels [J]. Electrochim. Acta., 2006, 51(15): 2991
doi: 10.1016/j.electacta.2005.08.033
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|