Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (7): 499-507    DOI: 10.11901/1005.3093.2023.555
  研究论文 本期目录 | 过刊浏览 |
深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响
汪丽佳, 许君怡, 胡励(), 苗天虎, 詹莎
重庆理工大学材料科学与工程学院 重庆 400054
Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature
WANG Lijia, XU Junyi, HU Li(), MIAO Tianhu, ZHAN Sha
College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
引用本文:

汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
Lijia WANG, Junyi XU, Li HU, Tianhu MIAO, Sha ZHAN. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. Chinese Journal of Materials Research, 2024, 38(7): 499-507.

全文: PDF(16650 KB)   HTML
摘要: 

将经520℃/5 h热处理的双峰分离非基面织构AZ31镁合金板材分别进行水冷处理和在液氮中深冷处理12 h,然后进行室温单轴拉伸实验并使用电子背散射衍射(EBSD)和透射电子显微(TEM)等手段表征,研究其室温力学行为和微观组织的演化。结果表明:在深冷处理和水冷处理的双峰分离非基面织构镁合金板材中,都析出了纳米相(Mg17Al12和Al8Mn5)。与水冷处理的板材相比,深冷处理板材中析出相的体积分数提高了65.5%,尺寸增大了78.7%。6%和12%的室温拉伸结果表明,变形后{101¯2}拉伸孪晶的体积分数分别提高了38.0%和36.7%。与水冷处理板材相比,深冷处理板材的初始屈服强度和最大抗拉强度分别提高43.8%和5.2%,但是断裂延伸率降低了20.4%。强度提高的主要原因是,在深冷处理过程中生成的高密度位错、Mg17Al12和Al8Mn5纳米析出相产生了沉淀强化;断裂延伸率降低的主要原因是,在{101¯2}拉伸孪晶界积累的高密度位错阻碍了基面滑移,使微裂纹倾向于向高位错密度处扩展。

关键词 金属材料非基面织构AZ31镁合金深冷处理微观组织演化塑性变形机制    
Abstract

In the present study, AZ31 Mg-alloy sheets with bimodal non-basal texture were subjected to heating treatment (520oC/5 h), and then immediately water-quenched and quenched into liquid nitrogen for 12 h. Then, their ambient temperature mechanical performance and microstructure evolution were studied by means of uniaxial tension testing, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results show that nano-precipitates Mg17Al12 and Al8Mn5 all exist in AZ31 Mg-alloy sheets. However, compared to the Mg-alloy sheet subjected to water-cooling treatment, the volume fraction and size of precipitates increase about 65.5% and 78.7% respectively for the sheet subjected to cryogenic treatment. Meanwhile, the volume fraction of {101¯2} extension twin (ET) increases by 38.0% and 36.7% for the sheet being subjected to 6% and 12% deformation, respectively. The yield strength (YS) and ultimate tensile strength (UTS) of the cryogenic treated sheets are increased by 43.8% and 5.2%, respectively, compared with the water-cooling treated ones, however, the fracture elongation (FE) decreases by 20.4%. The increase in YS and UTS may mainly be due to the generation of high-density dislocations and precipitation strengthening by Mg17Al12 and Al8Mn5 precipitates during cryogenic treatment. The decrease in FE is mainly due to the accumulation of high-density dislocations near {101¯2} ET boundaries during tensile deformation at room temperature, which would hinder the movement of basal slip and benefit in propagation of microcracks to expand to this region.

Key wordsmetallic materials    non-basal texture AZ31 magnesium alloy    cryogenic treatment    microstructure evolution    plastic deformation mechanism
收稿日期: 2023-11-22     
ZTFLH:  TG146.22  
基金资助:重庆市博士后研究项目(2021XM1022);重庆市教育委员会科学技术研究项目(KJQN202101141);重庆理工大学科研创新团队培育计划(2023TDZ010);重庆理工大学校级研究生创新项目(gzlcx20222004);重庆理工大学大学生创新创业训练计划项目(202311660005)
通讯作者: 胡励,副教授,huli@cqut.edu.cn,研究方向为镁合金板材特种塑性加工及变形行为
Corresponding author: HU Li, Tel: 17358428920, E-mail: huli@cqut.edu.cn
作者简介: 汪丽佳,女,1998年生,硕士生
图1  AZ31镁合金板材的初始微观组织和织构
图2  CT样品和WQ样品的真应力-应变曲线和相应的加工硬化曲线
SampleYS / MPaUTS / MPaFE / %YS / UTS
CT-sample10528419.10.37
WQ-sample[5]73270240.27
表1  CT样品和WQ样品单轴拉伸时的力学性能
图3  CT样品的变形量为6%和12%时的微观组织
图4  单轴拉伸过程中CT样品取向差角的分布
图5  CT样品的变形量为6%和12%时选取{101¯2}ETs的IPF图和(0002)PF图
图6  WQ样品和CT样品的TEM图
图7  CT样品变形量为6%时的TEM照片
图8  在单轴拉伸过程中WQ样品和CT样品的变形机制示意图
[1] Roberts C S. Magnesium and Its Alloys [M]. New York: John Wiley & Sons Ltd, 1960
[2] Guo R, Hu S P. Effects of technical factors on formability of AZ31 magnesium alloys [J]. Chin. J. Mater. Res., 2013, 27(2): 207
[2] 郭 睿, 胡水平. 工艺因素对AZ31镁合金板材室温成形性能的影响 [J]. 材料研究学报, 2013, 27(2): 207
[3] Suh B C, Shim M S, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here? [J]. Scr. Mater., 2014, 84-85: 1
[4] Tu J, Zhou T, Liu L, et al. Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature [J]. J. Alloys Compd., 2018, 768: 598
[5] Chen Y, Hu L, Shi L X, et al. Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature [J]. Mater. Sci. Eng., 2020, 769A: 138497
[6] Mónica P, Bravo P M, Cárdenas D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties [J]. J. Mater. Process. Technol., 2017, 239: 297
[7] Qi X X, Li Y X, Xu X Y, et al. Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates [J]. J. Mater. Sci. Technol., 2023, 166: 123
doi: 10.1016/j.jmst.2023.05.029
[8] Che B, Lu L W, Zhang J L, et al. Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths [J]. Mater. Sci. Eng., 2022, 832A: 142475
[9] Zhang J L, Lu L W, Kang W, et al. Effect of post rolling cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy sheet [J]. J. Plast. Eng., 2022, 29(2): 126
[9] 张家龙, 卢立伟, 康 伟 等. 轧后深冷处理工艺对 AZ31 镁合金板材组织和力学性能的影响 [J]. 塑性工程学报, 2022, 29(2): 126
doi: 10.3969/j.issn.1007-2012.2022.02.018
[10] Won J W, Choi S W, Hong J K, et al. Microstructure and strength-ductility balance of pure titanium processed by cryogenic rolling at various rolling reductions [J]. Mater. Sci. Eng., 2020, 798A: 140328
[11] Qi H, Lv Q Y, Li G L, et al. Effect of cryogenic treatment on B2 nanophase, dislocation and mechanical properties of Al1.4CrFe2Ni2 (BCC) high entropy alloy [J]. Mater. Sci. Eng., 2023, 878A: 145183
[12] Wang J L, Wang C C, Huang M H, et al. The effects and mechanisms of pre-deformation with low strain on temperature-induced martensitic transformation [J]. Acta Metall. Sin., 2021, 57(5): 575
doi: 10.11900/0412.1961.2020.00292
[12] 王金亮, 王晨充, 黄明浩 等. 低应变预变形对变温马氏体相变行为的影响规律及作用机制 [J]. 金属学报, 2021, 57(5): 575
doi: 10.11900/0412.1961.2020.00292
[13] Chen Y. Study on the plastic deformation mechanism of AZ31 Mg alloy sheet with bimodal non-basal texture under uniaxial tension at room temperature [D]. Chongqing: Chongqing University of Technology, 2020
[13] 陈 雨. 双峰非基面织构AZ31镁合金板材室温拉伸塑性变形机制研究 [D]. 重庆: 重庆理工大学, 2020
[14] Zhang S Z, Hu L, Ruan Y T, et al. Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature [J]. J. Magnes. Alloys, 2023, 11(7): 2600
[15] Hong S G, Park S H, Lee C S, et al. Role of {10 1 ¯ 2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy [J]. Acta Mater., 2010, 58(18): 5873
[16] Choi S H, Shin E J, Seong B S, et al. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression [J]. Acta Mater., 2007, 55(12): 4181
[17] Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy [J]. Mater. Sci. Eng., A, 2019, 767: 138361
[18] Che B, Lu L W, Zhang J L, et al. Investigation on microstructure and mechanical properties of hot-rolled AZ31 Mg alloy with various cryogenic treatments [J]. J. Mater. Res. Technol., 2022, 19: 4557
[19] Dong N N, Sun L X, Ma H B, et al. Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy [J]. Mater Lett., 2021, 305: 130699
[20] Mohan K, Suresh J A, Ramu P, et al. Microstructure and mechanical behavior of Al 7075-T6 subjected to shallow cryogenic treatment [J]. J. Mater. Eng. Perform., 2016, 25(6): 2185
[21] Chen X J, Liu W C, Wu G H, et al. Influence of cryogenic treatment on room and low temperature tensile behavior of as-cast Mg-10Gd-3Y-0.5Zr magnesium alloy [J]. J. Mater. Res., 2016, 31(4): 419
[22] Sonar T, Lomte S, Gogte C. Cryogenic treatment of metal-a review [J]. Mater. Today: Proc., 2018, 5(11): 25219
[23] Li S C, Zhao X, Gao P C, et al. The development of a W-shaped channel extrusion for fabricating magnesium alloy shells by combining high amplitude shear strain with a shorter process [J]. J. Mater. Res. Technol. 2023, 25: 2383
[24] Gong W, Zheng R X, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy [J]. J. Magnes. Alloys, 2022, 10(12): 3418
[25] Wang F L, Agnew S R. Dislocation transmutation by tension twinning in magnesium alloy AZ31 [J]. Int. J. Plast., 2016, 81: 63
[26] Chaudry U M, Tariq H M R, Ansari N, et al. Exceptional improvement in the yield strength of AZ61 magnesium alloy via cryo-stretching and its implications on the grain growth during annealing [J]. J. Alloys Compd., 2024, 970: 172630
[27] Chen Y F, Zhu Z Q, Siddiq M A, et al. Strengthening mechanisms of semi-coherent boundaries between Al8Mn4Y and the Mg matrix in magnesium alloys [J]. Mater. Sci. Eng., 2023, 887A: 145713
[28] Zhang L L, Chen J Y, Tang X, et al. Evolution of microstructures and mechanical properties of K439B superalloy during long-term aging at 800oC [J]. Acta Metall. Sin., 2023, 59(9): 1253
[28] 张雷雷, 陈晶阳, 汤 鑫 等. K439B铸造高温合金800℃长期时效组织与性能演变 [J]. 金属学报, 2023, 59(9): 1253
doi: 10.11900/0412.1961.2023.00141
[29] Zhang Y F, Ye L Y, Dong Y, et al. Effect of pre-strain on tensile mechanical properties of 2195 aluminum-lithium alloy [J]. Chin. J. Nonferrous Met., 2024, (3): 725
[29] 张翼飞, 叶凌英, 董 宇 等. 预变形对 2195 铝锂合金拉伸力学性能的影响 [J]. 中国有色金属学报, 2024, (3): 725
[30] Li S C, Zhao X, Gao P C, et al. The development of a W-shaped channel extrusion for fabricating magnesium alloy shells by combining high amplitude shear strain with a shorter process [J]. J. Mater. Res. Technol., 2023, 25: 2383
[31] Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48(8): 1009
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[3] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[4] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[5] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[6] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[8] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[9] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[10] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[11] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[12] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[13] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[14] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[15] 伍英明, 姜科达, 刘胜胆, 范世通, 覃秋慧, 李俊. lnZ 条件下6013铝合金的热压缩变形行为[J]. 材料研究学报, 2024, 38(5): 337-346.