Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 308-320    DOI: 10.11901/1005.3093.2023.288
  研究论文 本期目录 | 过刊浏览 |
J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素
崔怀云1, 刘智勇1,2(), 卢琳1,3()
1.北京科技大学新材料技术研究院 北京 100083
2.国家市场监管重点实验室(钢制管子及管件安全评价) 石家庄 050000
3.海洋装备用金属材料及其应用国家重点实验室 鞍山 114000
Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well
CUI Huaiyun1, LIU Zhiyong1,2(), LU Lin1,3()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory of Safety Evaluation of Steel Pipes and Fittings for State Market Regulation, Shijiazhuang 050000, China
3.State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114000, China
引用本文:

崔怀云, 刘智勇, 卢琳. J55钢在模拟CO2 注入井环空环境中的关键性腐蚀因素[J]. 材料研究学报, 2024, 38(4): 308-320.
Huaiyun CUI, Zhiyong LIU, Lin LU. Critical Corrosion Factors for J55 Tubing Steel in a Simulated Annulus Environment of CO2 Injection Well[J]. Chinese Journal of Materials Research, 2024, 38(4): 308-320.

全文: PDF(7742 KB)   HTML
摘要: 

基于实际CO2驱注井环空环境计算环空参数、测试电化学和进行相关性分析,研究了环境总压、CO2分压、pH值以及温度对J55钢腐蚀电化学行为的影响。结果表明,CO2分压和温度是影响J55钢腐蚀速度的关键因素。CO2分压与电荷转移电阻(Rct)显著相关,Spearman相关系数为-0.623;CO2分压的升高使溶液的pH值降低从而促进析氢反应,使腐蚀速率提高。温度与Rct的相关行显著,Spearman相关系数为-0.692;温度的降低抑制材料的电化学反应活性且阻碍腐蚀产物膜的形成,减缓了J55钢的腐蚀。溶液初始pH值的降低能促进J55钢的腐蚀,但是温度和CO2分压的影响可将其覆盖。

关键词 材料失效与保护CO2腐蚀电化学J55钢环空环境    
Abstract

CO2-enchanced oil recovery technology has been widely used to enhance the profitability of oil fields. The leakage of CO2 into the annulus environment results in the formation of strong corrosive annulus fluid there, which is ineluctable. Due to the fluctuations of annulus environmental parameters in the practice, therefore, to simulate the annulus environment in the laboratory may be very difficult. Based on the parameters of the real annulus environment, the impact of total pressure, partial pressure of CO2 (PCO2), pH value and temperature (T) etc., on the corrosion behavior of J55 steel are investigated by means of numerical simulation in terms of the parameters, electrochemical test and correlation analysis. Results shows that the PCO2 and T are the critical factors influencing corrosion behavior. The Spearman correlation coefficient (r) between PCO2 and charge transfer resistance (Rct) is -0.623, where the significant level is 0.013 (2-tailed), which means that the Rct is significantly correlated with the PCO2. The increasing PCO2 can decrease the pH value of the simulated annulus environment and accelerate the corrosion of J55 steel. The r between T and Rct is -0.692, where the significant level is 0.004 (2-tailed), which means that the Rct is significantly correlated with the T. The decreasing temperature can reduce the reaction activity of J55 steel, mitigate the corrosion and restrict the formation of FeCO3 scale. The initial pH of the simulated solution has a little promoting effect on the corrosion of J55 steel, which may be covered by the effect of T and PCO2.

Key wordsmaterials failure and protection    CO2 corrosion    electrochemical    J55 steel    annulus environment
收稿日期: 2023-06-09     
ZTFLH:  TG172  
基金资助:国家市场监督管理总局科技计划(2021MK020)
通讯作者: 刘智勇,研究员,liuzhiyong7804@126.com,研究方向为金属材料腐蚀与防护;
Corresponding author: LIU Zhiyong, Tel: (010)62333931, E-mail: liuzhiyong7804@126.com;
作者简介: 崔怀云,男,1995年生,博士生
CSiMnPSCrNiNbVFe
0.3950.2831.320.04190.02930.1060.04180.01580.0053Bal.
表1  实验用J55级油管钢的化学成分
图1  J55油管钢的金相组织
CompositionValue
Sulfate / mg·L-13000~15000
NaHCO3 / mg·L-1150~1000
KCl / mg·L-112000~15000
NaCl / mg·L-112000~15000
Inhibitor / mg·L-150~200
PCO2 / MPa4.00
表2  油田水介质的成分
ParametersKH'* / 101 mol·L-1·MPa-1K1'* / mol·L-1K2* / mol·L-1Kw* /(mol·L-1)2ρw / g·cm-3
a12.0302-7.8294-15.707-4.0981.8105 × 10-3
a2-2.3508 × 10-28.2473 × 10-33.0972 × 10-2-3245.2138.08
a32.6144 × 10-5-1.0530 × 10-5-4.3124 × 10-52.2362 × 104-
a4-4.4527 × 10-43.8058 × 10-4-3.9840 × 107-
a5-0.47721.16613.957-
a6--0.118-0.3466-1262.3-
a7---8.5641 × 105-
表3  修正后的平衡常数计算参数[23]
图2  模拟环空环境中pH值的计算结果
图3  在25℃环空pH值与CO2分压的关系
图4  电化学试样的示意图
图5  J55钢在不同总压下的Nyquist和Bode图,Nyquist图中的插图为对应的等效电路
图6  J55钢在不同温度下EIS谱拟合的等效电路
Ptotal / MPaRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H∙cm-2Cf / F·cm-2Rpore / Ω·cm2
157.865.380.81475.18253.2155.82.29826.17
126.607.490.79670.08301.4189.42.0313.66
97.106.230.81256.67217.9112.31.34912.77
69.085.350.81959.40203.5118.32.70518.62
48.516.500.78467.92254.7110.11.9523.12
表4  J55钢在不同总压下的电化学阻抗谱拟合数据
图7  J55油管钢在不同总压下的动电位极化曲线和拟合结果
图8  J55油管钢在不同PCO2下的Nyquist和Bode图,Nyquist图中的插图为对应的等效电路
PCO2 / MPaRs / Ω·cm2Qdl × 10-4-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm-2Cf / F·cm-2Rpore / Ω·cm2
47.106.230.81256.67217.9112.31.34912.77
38.365.120.82095.87314.42331.80112.23
27.805.120.817115.1449.2451.71.38610.84
17.8713.940.823197.8620.16401.28422.69
0.16.1632.840.847268.7933.213300.317525.57
表5  J55钢在不同PCO2下的阻抗谱拟合数据
图9  J55钢在不同PCO2下的动电位极化曲线和拟合结果
图10  在不同pH值下J55钢的Nyquist和Bode图
pHRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm2Cf / F·cm2Rpore / Ω·cm2
47.106.230.81256.67217.9112.31.34912.77
57.306.550.80462.82151032.3225.3
67.654.940.80781.52531643.0632
表6  J55钢在不同pH下的阻抗谱拟合数据
图11  J55钢在不同pH值下的动电位极化曲线和拟合结果
图12  J55钢在不同温度下的Nyquist和Bode图
T / oCRs / Ω·cm2Qdl × 10-4 / Ω-1·cm-2·s-nndlRct / Ω·cm2RL / Ω·cm2L / H·cm2Cf / F·cm2Rpore / Ω·cm2
512.43.670.83242.810981952--
1513.224.970.813116.8562689--
257.106.230.81256.67217.9112.31.34912.77
407.2713.20.77226.8474.519.83.2992.43
505.6212.50.81318.353.712.73.117.64
表7  J55钢在不同温度下电化学阻抗谱的拟合数据
图13  J55钢在不同温度下的极化曲线和拟合结果
NumberPtotal / MPaPCO2 / MPapHT / oCRct / Ω·cm2Icorr / μA·cm-2
PP19442556.67428.00
PP29342595.87201.00
PP392425115.1116.00
PP491425197.888.00
PP590.1425268.732.00
pH19442556.67428.00
pH29452562.8386.00
pH39462581.5312.00
T19445242.895.10
T294415116.8189.80
T39442556.67428.00
T49444026.841101.30
T59445018.31422.90
PT115442575.18236.21
PT212442570.08313.92
PT39442556.67428.00
PT46442559.40418.17
PT54442567.92395.23
表8  相关性计算的原始数据表
Shapiro-Wilk
StatisticSig. (P value)
Ptotal / MPa0.7410.001
PCO2 / MPa0.5990.000
pH0.4210.000
T / oC0.7360.001
Rct / Ω·cm20.8370.011
Icorr / μA·cm-20.7420.001
表9  表7中数据的正态性检验
图14  环境因素与J55钢腐蚀动力学参数的频率直方图
PtotalPCO2pHTRctIcorr
Ptotalr1.0000.0000.0000.0000.147-0.211
P-1.0001.0001.0000.6020.451
PCO2r0.0001.0000.2320.000-0.623*0.692**
P1.000-0.4051.0000.0130.004
pHr0.0000.2321.0000.000-0.0780.085
P1.0000.405-1.0000.7810.765
Tr0.0000.0000.0001.000-0.692**0.633*
P1.0001.0001.000-0.0040.011
Rctr0.147-0.623*-0.078-0.692**1.000-0.986**
P0.6020.0130.7810.004-0.000
Icorrr-0.2110.692**0.0850.633*-0.986**1.000
P0.4510.0040.7650.0110.000-
表10  Spearman等级相关分析结果
1 Banos A, Burrows R, Scott T B. A review of the mechanisms, reaction products and parameters affecting uranium corrosion in wa-ter [J]. Coord. Chem. Rev., 2021, 439: 213899
2 Huang B P. Study on CO2 immiscible flooding technology in low permeability reservoir of Daqing Oilfield [D]. Daqing: Northeast Petroleum University, 2017
2 黄宝萍. 大庆油田低渗透油藏CO2非混相驱油技术研究 [D]. 大庆: 东北石油大学, 2017
3 Hou B S. Corrosion and electrochemical behavior of N80 steel in high temperature and high pressure CO2/O2 environment [D]. Wuhan: Huazhong University of Science and Technology, 2017
3 侯保山. N80钢高温高压CO2/O2腐蚀及电化学行为研究 [D]. 武汉: 华中科技大学, 2017
4 Cui H Y, Mei P C, Liu Z Y, et al. Effect of CO2 partial pressure on the stress corrosion cracking behavior of N80 tubing steel in the annulus environment of CO2 injection well [J]. Chin. J. Eng., 2020, 42(9): 1182
4 崔怀云, 梅鹏程, 刘智勇 等. CO2分压对N80油管钢在CO2驱注井环空环境中应力腐蚀行为的影响 [J]. 工程科学学报, 2020, 42(9): 1182
5 Cui H Y, Mei P C, Lu L, et al. Effect of imidazoline corrosion inhibitor on stress corrosion behavior of N80 tubing steel in simulated annulus environment [J]. Saf. Health Environ., 2020, 20(11): 24
5 崔怀云, 梅鹏程, 卢 琳 等. 模拟环空环境下咪唑啉缓蚀剂对N80油管钢应力腐蚀行为的影响 [J]. 安全、健康和环境, 2020, 20(11): 24
6 Sun X G, Cui H Y, Li Z, et al. Effect of service environmental parameters on electrochemical corrosion behavior of L80 casing steel [J]. Materials, 2021, 14(19): 5575
7 Kahyarian A, Nesic S. On the mechanism of carbon dioxide corrosion of mild steel: Experimental investigation and mathematical modeling at elevated pressures and non-ideal solutions [J]. Corros. Sci., 2020, 173: 108719
8 Alsalem M M, Ryan M P, Campbell A N, et al. Modelling of CO2 corrosion and FeCO3 formation in NaCl solutions [J]. Chem. Eng. J., 2023, 451: 138966
9 Zhang G A, Liu D, Li Y Z, et al. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition [J]. Corros. Sci., 2017, 120: 107
10 Zhang G A, Lu M X, Wu Y S. Morphology and microstructure of CO2 corrosion scales [J]. Chin. J. Mater. Res., 2005, 19(5): 537
10 张国安, 路民旭, 吴荫顺. CO2腐蚀产物膜的微观形貌和结构特征 [J]. 材料研究学报, 2005, 19(5): 537
11 Hua Y, Barker R, Neville A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2 [J]. J. Supercrit. Fluids, 2015, 97: 224
12 Xu L N, Xiao H, Shang W J, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
13 Jia Z J, Du C W, Liu Z Y, et al. Effect of pH on the corrosion and electrochemical behavior of 3Cr steel in CO2 saturated NaCl solution [J]. Chin. J. Mater. Res., 2011, 25(1): 39
13 贾志军, 杜翠薇, 刘智勇 等. 3Cr低合金钢在含饱和CO2的NaCl溶液中的腐蚀电化学行为 [J]. 材料研究学报, 2011, 25(1): 39
14 Li G, Wu W, Chai P L, et al. Influence of Cr and Ni elements on the electrochemical and early corrosion behavior of FeMnAlC low-density steel [J]. J. Mater. Res. Technol., 2023, 23: 5892
15 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59(5): 443
16 Nešić S, Nordsveen M, Nyborg R, et al. A Mechanistic Model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 2: a numerical experiment [J]. Corrosion, 2003, 59(6): 489
17 Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49: 186
doi: 10.1016/j.jmst.2019.10.023
18 Wei L, Pang X L, Liu C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment [J]. Corros. Sci., 2015, 100: 404
19 Choi Y S, Farelas F, Nešić S, et al. Corrosion behavior of deep water oil production tubing material under supercritical CO2 environment: part 1—effect of pressure and temperature [J]. Corrosion, 2014, 70(1): 38
20 Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
21 Bacca K R G, Lopes N F, dos Santos Batista G, et al. Electrochemical, mechanical, and tribological properties of corrosion product scales formed on X65 steel under CO2 supercritical pressure environments [J]. Surf. Coat. Technol., 2022, 446: 128789
22 Sun C, Li J K, Shuang S, et al. Effect of defect on corrosion behavior of electroless Ni-P coating in CO2-saturated NaCl solution [J]. Corros. Sci., 2018, 134: 23
23 Oddo J E, Tomson M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions [J]. J. Pet. Technol., 1982, 34(7): 1583
24 Adamczyk K, Prémont-Schwarz M, Pines D, et al. Real-time observation of carbonic acid formation in aqueous solution [J]. Science, 2009, 326(5960): 1690
doi: 10.1126/science.1180060 pmid: 19965381
25 Pitzer K S. Thermodynamics of electrolytes. I. Theoretical basis and general equations [J]. J. Phys. Chem., 1973, 77(2): 268
26 Pitzer K S, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent [J]. J. Phys. Chem., 1973, 77(19): 2300
27 Iversen G R, Gergen M, translated by Wu X Z, Cheng B, Liu L X, et al. Statistics [M]. Beijing: Higher Education Press, 2000: 257
27 Iversen G R, Gergen M著, 吴喜之, 程 博, 柳林旭等译.统计学 [M]. 北京: 高等教育出版社, 2000: 257
28 Almeida T D C, Bandeira M C E, Moreira R M, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
29 Keddam M, Mottos O R, Takenouti H. Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model [J]. J. Electrochem. Soc., 1981, 128(2): 257
30 Barcia O E, Mattos O R. The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements [J]. Electrochim. Acta, 1990, 35(6): 1003
31 Zhang G A, Zeng Y, Guo X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment [J]. Corros. Sci., 2012, 65: 37
32 Sekine I, Sakaguchi K, Yuasa M. The determination of film resistance by means of the frequency at the maximum phase angle and the estimation of the degradation of the coating film [J]. Bull. Chem. Soc. Japan, 1990, 63(4): 1237
33 Zhang L. Thermodynamic models for accurate calculations of densities of brines and solubilities of gas mixtures in brines [D]. Xi'an: Northwest University, 2016
33 张 路. 混合气体—卤水体系的密度和气体溶解度计算模型 [D]. 西安: 西北大学, 2016
34 Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments—a review [J]. J. Mater. Sci. Technol., 2022, 112: 230
35 Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on corrosion behavior of X70 pipeline steel in a simulated deep-sea environment [J]. J. Electroanal. Chem., 2018, 822: 123
36 Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure [J]. Electrochim. Acta, 2016, 210: 401
[1] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[2] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[3] 李飞阳, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 汤雁冰. 激光选区熔化316L不锈钢在酸性氯离子溶液中的钝化行为[J]. 材料研究学报, 2024, 38(3): 221-231.
[4] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
[7] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[8] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[9] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[10] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[11] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[12] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[13] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[14] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[15] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.