Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 924-932    DOI: 10.11901/1005.3093.2022.656
  研究论文 本期目录 | 过刊浏览 |
D-氨基酸对不同钢材混合菌腐蚀行为的影响
胥聪敏1(), 张津瑞1, 朱文胜2, 杨兴1, 姚攀1, 李雪丽1
1.西安石油大学材料科学与工程学院 西安 710065
2.中海油常州涂料化工研究院有限公司 常州 213000
Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria
XU Congmin1(), ZHANG Jinrui1, ZHU Wensheng2, YANG Xing1, YAO Pan1, LI Xueli1
1.School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd., Changzhou 213000, China
引用本文:

胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
Congmin XU, Jinrui ZHANG, Wensheng ZHU, Xing YANG, Pan YAO, Xueli LI. Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria[J]. Chinese Journal of Materials Research, 2023, 37(12): 924-932.

全文: PDF(9208 KB)   HTML
摘要: 

研究了杀菌剂与D-氨基酸对20#碳钢、N80钢以及P110钢在硫酸盐还原菌(SRB)+铁氧化菌(IOB)混合菌腐蚀过程中的影响作用,利用失重与电化学测量以及扫描电镜(SEM)对腐蚀形貌分析等初步探索了D-氨基酸的杀菌缓蚀增强机理。无杀菌剂组中P110发生严重腐蚀(0.278 mm/a),20#与N80腐蚀速率较低(为0.149、0.148 mm/a),所有试样表面有均匀且致密的生物膜以及腐蚀产物堆积;有杀菌剂组中三种钢材腐蚀程度减缓,腐蚀产物膜发生龟裂、剥离,其中Ca、Mg、P以及S含量明显减少。在添加杀菌剂溶液中浸泡14 d后,三种钢材的腐蚀速率明显降低。有无杀菌剂下,三种钢材耐蚀性由优到差排序均为N80>20#>P110。SRB和IOB混合菌的腐蚀机制可能是由于SRB通过自身代谢将基体Fe氧化为Fe2+,Fe2+又被IOB进一步氧化为Fe3+且IOB为SRB提供环境条件形成了协同作用。D-氨基酸和杀菌剂通过调控细菌基因表达、破坏细胞结构、氧浓差环境等方式有效的抑制微生物腐蚀(MIC)行为。三种钢材由于C、Cu等元素含量不同,使得三种钢材在无菌条件下腐蚀速率有所差异。

关键词 材料失效与保护D-氨基酸混合菌碳钢杀菌剂生物膜腐蚀行为    
Abstract

The effect of biocide and D-amino acid on the corrosion behavior of 20# carbon steel, N80 steel and P110 steel in the media of SRB+IOB mixed bacteria, was comparatively assessed by using weight loss method, electrochemical measurements and SEM. In the tests without biocide, P110 suffered from severe corrosion with weight loss of 0.278 mm/a, while weight loss of 20# and N80 were 0.149 and 0.148 mm/a respectively, while uniform and dense biofilms with deposited corrosion products formed on the surface of all the steels; in the tests with biocide, the corrosion of the three steels slowed down, it is found that the formed rust scales on the surface of steels with significantly lower content of Ca Mg, P, and S, but with cracks and spallation steels. The electrochemical measurement results also revealed that the corrosion rate of three steels was significantly reduced when they were immersed for 14 d in the corrosive media with addition of biocides. The corrosion mechanism of SRB and IOB mixed bacteria is probably due to that SRB oxidizes Fe to Fe2+ through its own metabolism, and Fe2+ is further oxidized by IOB to Fe3+, and IOB provides environmental conditions for SRB so as to form a synergistic effect. It is proposed that D-amino acids and biocide effectively inhibit MIC behavior by regulating the bacterial gene expression and destroys the cell structure, as well as the oxygen concentration difference environment. Due to the different content of C, Cu and others, the corrosion rate of the three steels may be different under the sterile conditions.

Key wordsmaterial failure and protection    D-amino acids    mixed bacteria    carbon steel    biocides    biofilms    corrosion behavior
收稿日期: 2022-12-10     
ZTFLH:  TG172.6  
基金资助:国家自然科学基金(51974245);国家自然科学基金(21808182);陕西省重点研发计划(2020GY-234);西安石油大学材料科学与工程学院西安市高性能油气田材料重点实验室,西安石油大学“材料科学与工程”省级优势学科项目(YS37020203);西安石油大学研究生创新与实践能力培养项目(YCS21212131)
通讯作者: 胥聪敏,教授,cmxu@xsyu.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: XU Congmin, Tel: 18092078500, E-mail: cmxu@xsyu.edu.cn
作者简介: 胥聪敏,女,1977年生,博士
SteelCMnSiSPCu
20#00.200.390.210.0050.0160.165
N800.471.550.250.0080.015-
P1100.260.650.250.0030.0060.036
表1  三种钢材化学元素成分含量
Chemical compositionHydrochloric acid / mLDistilled water / mLHexamethy ltetramine / g
Amount2502501.75
表2  除锈液配比
ClassificationAverage corrosion rate
Low<0.025
Moderate0.025~0.12
High0.13~0.25
Severe>0.25
表3  NACE RP-0775-2005中腐蚀速率规定
图1  20#、N80与P110在有、无杀菌剂的溶液中的腐蚀速率
SteelsSRB antibacterial rate / %IOB antibacterial rate / %Corrosion inhibition rate / %
20#99.0592.5035.15
N8099.7385.0060.32
P11099.0084.2138.08
表4  三种钢材在SRB+IOB培养基中腐蚀14 d后杀菌率与缓蚀率
图2  三种钢材在SRB+IOB培养基中腐蚀14 d后表面宏观形貌
图3  三种钢材在SRB+IOB培养基中腐蚀14 d后表面SEM图像及EDS图谱
图4  三种钢材在SRB+IOB培养基中腐蚀14 d后极化曲线图
NumberSteelsba / mV·dec-1bc / mV·dec-1Icorr / A·cm-2Ecorr / mV
Without industrial bactericide group120#42.22101.920.8×10-5-759
2N8071.16294.99.11×10-5-619
3P11050.45694.126.4×10-5-586
With industrial bactericide group420#102.2226.93.58×10-5-702
5N80129.8125.12.44×10-5-735
6P11037.87183.34.75×10-5-640
表5  三种钢材在SRB+IOB培养基中腐蚀14 d后的Tafel拟合数据
图5  三种钢材在SRB+IOB培养基中腐蚀14 d后的Nyqusit、Bode及拟合曲线图
图6  EIS数据拟合的等效电路模型
SteelsEquivalent circuit model

Rs

/ Ω·cm2

Yf

/ sn Ω-1·cm-2

nf

Rf

/ Ω·cm2

Ydl

/ sn Ω-1·cm-2

ndl

Rct

/ Ω·cm2

ZW

/ Ω-1

Without20#Fig.6a14.52.46×10-20.83258.53.46×10-20.866124-
industrial bactericideN80Fig.6a6.742.51×10-2148.023.93×10-21146-
groupP110Fig.6a13.77.55×10-3121.81.37×10-21118-
With20#Fig.6b5.692.94×10-2127.15.12×10-30.5381.41×1035.69
industrial bactericideN80Fig.6a7.712.56×10-30.8281.58×1033.96×10-30.992129-
groupP110Fig.6a3.129.07×10-3164.51.13×10-21111-
表6  三种钢材在SRB+IOB培养基中腐蚀14 d后的EIS拟合数据
图7  三种钢材在添加和未添加杀菌剂的SRB+IOB培养基中浸泡14 d后的Rp
1 Wang H T, Zhang F, Wang Y, et al. Analysis of microbial corrosion by sulfate-reducing bacteria in product oil pipeline [J]. Press. Vessel Technol., 2021, 38(4): 20
1 王海涛, 张 斐, 王 垚 等. 成品油输送管道硫酸盐还原菌腐蚀分析 [J]. 压力容器, 2021, 38(4): 20
2 Sun D X, Wu M, Xie F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution [J]. Mater. Sci. Eng., 2018, 721A: 135
3 Liu H W, Chen C Y, Zhang Y X, et al. Research progress of microbial corrosion and protection in oil and gas fields [J]. Equip. Environ. Eng., 2020, 17(11): 1
3 刘宏伟, 陈翠颖, 张雨轩 等. 油气田微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2020, 17(11): 1
4 Li H R, He M, Gong X J. Corrosion reasons of cooling water pipeline in power plant and corresponding measures [J]. Corros. Prot., 2021, 42(5): 85
4 李海荣, 何 睦, 巩小杰. 电厂冷却水碳钢管道腐蚀的原因及相应对策 [J]. 腐蚀与防护, 2021, 42(5): 85
5 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfatereducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38(1): 1
5 管 方, 翟晓凡, 段继周 等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38(1): 1
6 Shatirova M I, Movsumzade M M, Dzhafarova U S, et al. Amine-containing acetylene compounds of the norbornene series—promising biocides for use in petroleum production [J]. Pet. Chem., 2019, 59(2): 220
doi: 10.1134/S0965544119020166
7 Kolodkin-Gal I, Romero D, Cao S G, et al. D-Amino acids trigger biofilm disassembly [J]. Science, 2010, 328(5978): 627
doi: 10.1126/science.1188628 pmid: 20431016
8 Atlam F M, Al-mhyawi S R. Experimental, theoretical explorations and MD simulation of the inhibition efficiency of tyrosine on carbon steel in hydrochloric acid [J]. J. Mol. Struct., 2021, 1246: 131102
doi: 10.1016/j.molstruc.2021.131102
9 Xu D, Li Y, Gu T. A synergisticD-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28(10): 3067
doi: 10.1007/s11274-012-1116-0
10 Li Y C, Jia R, Al-Mahamedh H H, et al. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-Amino acids [J]. Front. Microbiol., 2016, 7: 896
doi: 10.3389/fmicb.2016.00896 pmid: 27379039
11 Xu C M, Luo L H, Wang W Y, et al. Enhancing sterilization effect of bactericide by D-tyrosine to iron bacterial biofilm on carbon steel surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40(1): 63
11 胥聪敏, 罗立辉, 王文渊 等. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究 [J]. 中国腐蚀与防护学报, 2020, 40(1): 63
doi: 10.11902/1005.4537.2019.222
12 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
13 Li X, Shang D Z, Li Z M, et al. SRB corrosion behavior of L245 pipeline steel with different cathode polarization potential [J]. Surf. Technol., 2022, 51(7): 207
13 李 鑫, 尚东芝, 李子墨 等. 不同阴极极化条件对L245的SRB腐蚀行为影响 [J]. 表面技术, 2022, 51(7): 207
14 Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
14 宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
15 Xu J N. Research on corrosion and scaling mechanism and protective measures of high temperature sewage pipeline in a block [D]. Chongqing: Chongqing University of Science & Technology, 2021
15 许俊南. 某气田A区块高温污水管道腐蚀结垢机理及防护措施研究 [D]. 重庆: 重庆科技学院, 2021
16 Zhang D F, Cui L B, Liu Y P. Study on forming process of anodized film of magnesium alloy by electrochemical impedance spectroscopy [J]. Rare Met. Mater. Eng., 2012, 41(7): 1181
16 张丁非, 崔立波, 刘渝萍. 镁合金阳极氧化膜成膜过程的交流阻抗谱研究 [J]. 稀有金属材料与工程, 2012, 41(7): 1181
17 Xu J, Jia R, Yang D Q, et al. Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel [J]. J. Mater. Sci. Technol., 2019, 35(1): 109
doi: 10.1016/j.jmst.2018.09.011
18 Cui L Y, Liu Z Y, Hu P, et al. Laboratory investigation of microbiologically influenced corrosion of X80 pipeline steel by sulfate-reducing bacteria [J]. J. Mater. Eng. Perform., 2021, 30(10): 7584
doi: 10.1007/s11665-021-05974-z
19 Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
19 于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10
[1] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 袁强强, 汪志刚, 江永芳, 张迎晖, 黄安康, 叶洁云. 温轧温度对Cr-Ti-B系低碳钢组织与织构的影响[J]. 材料研究学报, 2022, 36(2): 81-89.
[7] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[12] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[14] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[15] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.