|
|
D-氨基酸对不同钢材混合菌腐蚀行为的影响 |
胥聪敏1( ), 张津瑞1, 朱文胜2, 杨兴1, 姚攀1, 李雪丽1 |
1.西安石油大学材料科学与工程学院 西安 710065 2.中海油常州涂料化工研究院有限公司 常州 213000 |
|
Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria |
XU Congmin1( ), ZHANG Jinrui1, ZHU Wensheng2, YANG Xing1, YAO Pan1, LI Xueli1 |
1.School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China 2.CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd., Changzhou 213000, China |
引用本文:
胥聪敏, 张津瑞, 朱文胜, 杨兴, 姚攀, 李雪丽. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
Congmin XU,
Jinrui ZHANG,
Wensheng ZHU,
Xing YANG,
Pan YAO,
Xueli LI.
Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria[J]. Chinese Journal of Materials Research, 2023, 37(12): 924-932.
1 |
Wang H T, Zhang F, Wang Y, et al. Analysis of microbial corrosion by sulfate-reducing bacteria in product oil pipeline [J]. Press. Vessel Technol., 2021, 38(4): 20
|
1 |
王海涛, 张 斐, 王 垚 等. 成品油输送管道硫酸盐还原菌腐蚀分析 [J]. 压力容器, 2021, 38(4): 20
|
2 |
Sun D X, Wu M, Xie F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution [J]. Mater. Sci. Eng., 2018, 721A: 135
|
3 |
Liu H W, Chen C Y, Zhang Y X, et al. Research progress of microbial corrosion and protection in oil and gas fields [J]. Equip. Environ. Eng., 2020, 17(11): 1
|
3 |
刘宏伟, 陈翠颖, 张雨轩 等. 油气田微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2020, 17(11): 1
|
4 |
Li H R, He M, Gong X J. Corrosion reasons of cooling water pipeline in power plant and corresponding measures [J]. Corros. Prot., 2021, 42(5): 85
|
4 |
李海荣, 何 睦, 巩小杰. 电厂冷却水碳钢管道腐蚀的原因及相应对策 [J]. 腐蚀与防护, 2021, 42(5): 85
|
5 |
Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfatereducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38(1): 1
|
5 |
管 方, 翟晓凡, 段继周 等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38(1): 1
|
6 |
Shatirova M I, Movsumzade M M, Dzhafarova U S, et al. Amine-containing acetylene compounds of the norbornene series—promising biocides for use in petroleum production [J]. Pet. Chem., 2019, 59(2): 220
doi: 10.1134/S0965544119020166
|
7 |
Kolodkin-Gal I, Romero D, Cao S G, et al. D-Amino acids trigger biofilm disassembly [J]. Science, 2010, 328(5978): 627
doi: 10.1126/science.1188628
pmid: 20431016
|
8 |
Atlam F M, Al-mhyawi S R. Experimental, theoretical explorations and MD simulation of the inhibition efficiency of tyrosine on carbon steel in hydrochloric acid [J]. J. Mol. Struct., 2021, 1246: 131102
doi: 10.1016/j.molstruc.2021.131102
|
9 |
Xu D, Li Y, Gu T. A synergisticD-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28(10): 3067
doi: 10.1007/s11274-012-1116-0
|
10 |
Li Y C, Jia R, Al-Mahamedh H H, et al. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-Amino acids [J]. Front. Microbiol., 2016, 7: 896
doi: 10.3389/fmicb.2016.00896
pmid: 27379039
|
11 |
Xu C M, Luo L H, Wang W Y, et al. Enhancing sterilization effect of bactericide by D-tyrosine to iron bacterial biofilm on carbon steel surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40(1): 63
|
11 |
胥聪敏, 罗立辉, 王文渊 等. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究 [J]. 中国腐蚀与防护学报, 2020, 40(1): 63
doi: 10.11902/1005.4537.2019.222
|
12 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
|
13 |
Li X, Shang D Z, Li Z M, et al. SRB corrosion behavior of L245 pipeline steel with different cathode polarization potential [J]. Surf. Technol., 2022, 51(7): 207
|
13 |
李 鑫, 尚东芝, 李子墨 等. 不同阴极极化条件对L245的SRB腐蚀行为影响 [J]. 表面技术, 2022, 51(7): 207
|
14 |
Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
|
14 |
宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
|
15 |
Xu J N. Research on corrosion and scaling mechanism and protective measures of high temperature sewage pipeline in a block [D]. Chongqing: Chongqing University of Science & Technology, 2021
|
15 |
许俊南. 某气田A区块高温污水管道腐蚀结垢机理及防护措施研究 [D]. 重庆: 重庆科技学院, 2021
|
16 |
Zhang D F, Cui L B, Liu Y P. Study on forming process of anodized film of magnesium alloy by electrochemical impedance spectroscopy [J]. Rare Met. Mater. Eng., 2012, 41(7): 1181
|
16 |
张丁非, 崔立波, 刘渝萍. 镁合金阳极氧化膜成膜过程的交流阻抗谱研究 [J]. 稀有金属材料与工程, 2012, 41(7): 1181
|
17 |
Xu J, Jia R, Yang D Q, et al. Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel [J]. J. Mater. Sci. Technol., 2019, 35(1): 109
doi: 10.1016/j.jmst.2018.09.011
|
18 |
Cui L Y, Liu Z Y, Hu P, et al. Laboratory investigation of microbiologically influenced corrosion of X80 pipeline steel by sulfate-reducing bacteria [J]. J. Mater. Eng. Perform., 2021, 30(10): 7584
doi: 10.1007/s11665-021-05974-z
|
19 |
Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
|
19 |
于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|