Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 535-542    DOI: 10.11901/1005.3093.2020.401
  研究论文 本期目录 | 过刊浏览 |
微穿孔板-聚合物层状结构材料的制备和吸声性能
徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良()
武汉工程大学材料科学与工程学院 武汉 430074
Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials
XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang()
School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
引用本文:

徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.
Wen XU, Zhijie WANG, Wenwen ZHU, Zitong PENG, Chu YAO, Feng YOU, Xueliang JIANG. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials[J]. Chinese Journal of Materials Research, 2021, 35(7): 535-542.

全文: PDF(3988 KB)   HTML
摘要: 

以微穿孔板(MPP)、聚氨酯泡沫(PU)、丁腈橡胶(NBR)和空腔(AG)为原料,根据不同的结构顺序分别制备出MPP-AG共振结构、MPP-PUFM层状结构、MPP-AG-NBR-PUFM多层结构材料和NBR-PUFM-MPP-AG多层结构材料,研究了MMP穿孔率、PUFM厚度、泡沫层孔径、泡沫厚度和结构交替顺序对复合材料吸声性能的影响。结果表明:在频率较低的条件下MPP穿孔率越低或在较高频率条件下MPP穿孔率越高,层状结构材料的吸声系数越高;随着PUFM厚度的增大层状结构材料的共振峰值频率向低频方向移动。与MPP-PUFM层状结构材料相比,MPP-AG-NBR-PUFM在500~1600Hz频率范围的平均吸声系数由0.58提高到0.66;NBR-PUFM-MPP-AG多层结构材料具有优异的中低频吸声性能,频率为400 Hz时最大吸声系数达到0.94,频率为2700 Hz时吸声系数达到0.85。

关键词 复合材料微穿孔板聚氨酯泡沫丁腈橡胶层状结构吸声    
Abstract

MPP-AG resonance structure, MPP-PUFM layered structure, MPP-AG-NBR-PUFM multilayer structure material and NBR-PUFM-MPP-AG multilayer structure material were respectively prepared taking micro-perforated panel (MPP), polyurethane foam (PU), nitrile rubber (NBR) and cavity (AG) micro materials as raw materials, which were placed separately in desired structural order. The effect of MMP perforation rate, PUFM thickness, pore size of foam layer, thickness of foam and alternation order of structure on sound absorption properties of composite materials were investigated. The results show that: at lower frequency, the smaller the MPP perforation rate, and at higher frequency, the higher the MPP perforation rate, the higher the sound absorption coefficient of layered structure materials; With the increase of PUFM thickness, the resonance peak frequency of layered structure materials gradually moves toward the low frequency direction. In comparison with MPP-PUFM, the average sound absorption coefficient of MMP-AG-NBR-PUFM increases from 0.58 to 0.66 in the frequency range of 500~1600 Hz; NBR-PUFM-MPP-AG multi-layer structure material shows excellent sound absorption performance by low and medium frequencies, with the maximum absorption coefficient of 0.94 at 400 Hz and 0.85 at 2700 Hz.

Key wordscomposite    micro-perforated plate    polyurethane foam    nitrile rubber    layered structure    sound absorption
收稿日期: 2020-09-27     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51273154);武汉工程大学研究生教育创新基金(CX2019056)
作者简介: 徐稳,男,1994年生,硕士生
Parametersd/mmt/mmD/mmσ/%
a11100,302
b11100,305
c15100,302
d110100,302
e115100,302
表1  两种穿孔板吸声结构的结构参数
图1  微穿孔板层状结构的示意图
图2  穿孔率对MPP-PUFM层状结构材料吸声性能的 影响
图3  材质对MPP-AG共振结构吸声性能的影响
图4  MPP厚度对MPP-AG共振结构吸声性能的影响
图5  PUFM厚度对MPP-PUFM层状结构材料吸声性能的影响
图6  PUFM材料的光学显微镜照片和孔径分布
图7  PUFM的孔径对MPP-PUFM层状结构材料吸声性能的影响
图8  不同结构的MPP-AG-NBR-PUFM多层结构材 料的吸声性能
图9  不同AG/PUFM层厚比的MPP-AG-NBR-PUFM 多层结构材料的吸声
图10  不同PUFM/AG层厚比的NBR-PUFM-MPP- AG多层结构材料的吸声性能
1 Xu S Q, Wang Q. Industrial Noise and Vibration Control [M]. Beijing: Metallurgical Industry Press, 1987
1 徐世勤, 王 樯. 工业噪声与振动控制 [M]. 北京: 冶金工业出版社, 1987
2 Su W, Li X Y, Liu S S. Dicussion on feasibility of nonwovens sound-absorbing materials used for road sound-absorbing barrier [J]. Nonwovens, 2009, 17(2): 20
2 苏文, 李新禹, 刘树森. 道路声屏障用非织造布吸声材料的可行性研究 [J]. 浙江纺织服装职业技术学院学报, 2009, 17(2): 20
3 Zhao L X. Noise and Vibration Control Technology [M]. Beijing: Chemical Industry Press, 2004
3 赵良省. 噪声与振动控制技术 [M]. 北京: 化学工业出版社, 2004
4 Pei C M, Zhou B, Li D K, et al. Study on the composite sound absorber made up of porous materials and MPP [J]. Noise Vib. Control, 2015, 35(5): 35
4 裴春明, 周兵, 李登科等. 多孔材料和微穿孔板复合吸声结构研究 [J]. 噪声与振动控制, 2015, 35(5): 35
5 Maa D Y. Accurate theory and design of microperforated-panel absorbers [J]. Acta Acoustics, 1997, 22: 385
5 马大猷. 微穿孔板吸声体的准确理论和设计 [J]. 声学学报, 1997, 22: 385
6 Ma D Y. Theory and design of sound absorption structure with micro-perforated panel [J]. Chin. Sci., 1975, 18(1): 38
6 马大猷. 微穿孔板吸声结构的理论和设计 [J]. 中国科学, 1975, 18: 38
7 Liu P S. Determining methods for aperture and aperture distribution of porous materials [J]. Titanium Ind. Prog., 2006, 23(2): 29
7 刘培生. 多孔材料孔径及孔径分布的测定方法 [J]. 钛工业进展, 2006, 23(2): 29
8 Liu P S. Determining methods for specific surface area and pore morphology of porous materials [J]. Rare Met. Mater. Eng., 2006, 35(s2): 25
8 刘培生. 多孔材料比表面积和孔隙形貌的测定方法 [J]. 稀有金属材料与工程, 2006, 35(S2): 25
9 Meng W Z, Yang S Y. Study on the design Method of the foam material with regular cell structure [J]. Res. Stud. Found. Equip., 2006, (3): 17
9 孟文哲, 杨思一. 具有规则孔型多孔材料的结构设计方法研究 [J]. 铸造设备研究, 2006, (3): 17
10 Liu W W, He S Y, Huang K, et al. Sound absorption of periodic porous aluminium with controlled pore structures [J]. Chin. J. Mater. Res., 2009, 23: 171
10 刘伟伟, 何思渊, 黄可等. 孔结构周期调制通孔多孔铝合金及其吸声性能 [J]. 材料研究学报, 2009, 23: 171
11 Gwon J G, Kim S K, Kim J H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures [J]. Mater. Des., 2016, 89: 448
12 Lin J H, Chuang Y C, Li T T, et al. Effects of perforation on rigid PU foam plates: Acoustic and mechanical properties [J]. Materials, 2016, 9: 1000
13 Zhang C Q, Kessler M R. Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol [J]. ACS Sustainable Chem. Eng., 2015, 3: 743
14 Liang H Y, Wang S W, He H, et al. Aqueous anionic polyurethane dispersions from castor oil [J]. Ind. Crop Prod., 2018, 122: 182
15 Chen M X, Jiang X L, Li J R, et al. Preparation and sound absorption properties of foamed polyurethane [J] J. Wuhan Univ. Technol., 2019, 41: 541
15 陈明轩, 江学良, 李菁瑞等. 发泡聚氨酯的制备及吸声性能 [J]. 武汉工程大学学报, 2019, 41: 541
16 Gholami M S, Doutres O, Atalla N. Effect of variability in microgeometry of polyurethane foams on their macroscopic acoustic performance [A]. Inter-noise & Noise-con Congress & Conference Proceedings [C]. Providence, Rhode Island: Institute of Noise Control Engineering, 2016: 872
17 Atalla Y, Fu J, Atalla N, et al. Study of the effects of processing parameters on the sound absorption of open-cell microcellular polymeric foams [J]. Noise Control Eng. J., 2010, 58: 18
18 Lee J, Kim G H, Ha C S. Sound absorption properties of polyurethane/nano-silica nanocomposite foams [J]. J. Appl. Polym. Sci., 2012, 123: 2384
19 Geng J L, Wang C P, Zhu H L, et al. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam [A]. Proceedings Volume 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII [C]. Denver, United States: SPIE, 2018: 105961W
20 Li T T, Zhang X, Wang H Y, et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface [J]. Polym. Adv. Technol., 2020, 31: 451
21 Jiang X L, Yang Z, Wang Z J, et al. Preparation and sound absorption properties of a barium Titanate/Nitrile butadiene rubber-polyurethane foam composite with multilayered structure [J]. Materials, 2018, 11: 474
22 He L. Acoustics Theory and Engineering Applications [M]. Beijing: Science Press, 2006
22 何琳. 声学理论与工程应用 [M]. 北京: 科学出版社, 2006
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.