Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 752-760    DOI: 10.11901/1005.3093.2020.535
  研究论文 本期目录 | 过刊浏览 |
基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能
万里鹰(), 肖洋, 张伦亮
南昌航空大学材料科学与工程学院 南昌 330063
Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond
WAN Liying(), XIAO Yang, ZHANG Lunliang
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
Liying WAN, Yang XIAO, Lunliang ZHANG. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. Chinese Journal of Materials Research, 2021, 35(10): 752-760.

全文: PDF(15621 KB)   HTML
摘要: 

使高度柔性的聚四氢呋喃二醇(PTMG)基材与糠基缩水甘油醚-2-呋喃甲胺(FGE-FA)反应得到四元呋喃结构的聚氨酯预聚物,再将其与含亲双烯体结构的双马来酰亚胺反应制备出高密度Diels-Alder(DA)动态共价键结构的自修复聚氨酯(PU-DA)。用FTIR、DSC和OM表征PU-DA的结构,用电子万能试验机测试了PU-DA的性能。结果表明:在PU-DA中引入了DA动态共价键后, 其正、逆反应温度分别为70℃和132℃;PU-DA具有良好的重塑性、溶胀溶解性和多次自修复性能。受损试样在70℃修复4 h裂纹即基本愈合,第一次修复率可达94.8%,三次修复率仍高于70%。

关键词 有机高分子材料自修复Diels-Alder反应聚氨酯热可逆性    
Abstract

The highly flexible polytetrahydrofuranediol (PTMG) substrate was reacted with furfuryl glycidyl ether-2-furanethylamine (FGE-FA) to obtain the polyurethane prepolymer of tetrahydrofuran structure, and then it was reacted with bismaleimide of dienophile structure to prepare high density Diels-Alder (DA) self-healing polyurethane (PU-DA) with dynamic covalent bond. The PU-DA was characterized by FTIR, DSC and OM, and the performance of PU-DA was tested by electronic universal testing machine. The results show that the forward and reverse reaction temperatures of PU-DA are 70℃ and 132℃, respectively, after the introduction of DA dynamic covalent bond. PU-DA has good performance in remodeling, swelling solubility and multiple self-healing. Cracks of the damaged PU-DA could basically be healed by heating at 70℃ for 4 h, meanwhile, the first repair rate could 94.8%, and the third repair rate was still higher than 70%.

Key wordsorganic polymer materials    self-healing    Diels-Alder reaction    polyurethane    thermal reversibility
收稿日期: 2020-12-17     
ZTFLH:  TQ323  
基金资助:国家自然科学基金(51463016);上海航天科技创新基金(SAST2016053)
作者简介: 万里鹰,男,1975生,博士
图1  PU-DA的合成路线
图2  FGE、FGE-FA、IPDI-PTMG和Pre-PU的红外光谱
图3  PU-DA的ATR红外光谱
图4  1,8-BMI和PU-DA的DSC曲线
图5  1,8-BMI和PU-DA的TGA曲线
SamplesOriginal sampleSamples repaired time/h
248
Tensile strength/MPa4.202.273.984.07
Elongation at break/%305.59225.14298.98305.16
Repair rate/%-54.0594.7696.90
表1  修复时间对PU-DA力学性能的影响
图6  PU-DA在70℃修复不同时间力学性能的变化
图7  PU-DA的溶胀溶解实验
T/℃m0/gm1/gm2/gL/%S/%
301.024.490.99340.192.94
901.26-0.04-96.82
表2  PU-DA试样在不同温度下的溶胀和溶解性
图8  PU-DA试样修复前后的微观形貌
图9  PU-DA基于热可逆DA动态共价键的修复机理
图10  PU-DA的多次自修复性能
图11  修复不同次数后PU-DA的应力-应变曲线
Repair timesStress/MPaElongation at break/%η/%
Original4.20305.59-
1st3.98298.9894.8
2nd3.61291.0385.9
3rd3.02264.7471.9
表3  试样多次自修复下的拉伸测试和修复率
图12  PU-DA的重塑加工性能
1 Xu J F, Lin P, Long L, et al. Aging performance of nano-ZnO modified polyurethane-acrylic UV ink composites on wood and the degradation mechanism [J]. Polym. Composite., 2019, 40(9): 3533
2 Keiichi I, Masamichi N, Atsushi I, et al. Diarylbibenzofuranone-based dynamic covalent polymer gels prepared via radical polymerization and subsequent polymer reaction [J]. Gels, 2015, 1(1): 58
3 White S R, Scottos N R, Geubelle P H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409(6822): 794
4 White S R, Moore J S, Sottos N R, et al. Restoration of large Damage volumes in polymers [J]. Science, 2014, 344(6184): 620
5 Burnworth M, Tang L, Kumpfer J R, et al. Optically healable supramolecular polymers [J]. Nature, 2011, 472(7343): 334
6 Du P F, Jia H Y, Chen Q H, et al. Slightly crosslinked polyurethane with Diels-Alder adducts from trimethylolpropane [J]. J. Appl. Polym. Sci., 2016, 133(39): 43971
7 Sun C Y, Jia H Y, Lei K, et al. Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds [J]. Polymer, 2019, 160: 246
8 An S Y, Noh S M, Nam J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability [J]. Macromol. Rapid. Comm., 2015, 36(13): 1255
9 Guo Z, Ma W, Gu H J, et al. pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds [J]. Soft Matter, 2017: 13(40): 7371
10 Liu Y S, Liu Y G, Wang Q X, et al. Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds [J]. Polymers, 2020, 12(2): 487
11 Li T, Xie Z N, Xu J, et al. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding [J]. Eur. Polym. J., 2018, 8(5): 8515
12 Alaitz R, Roberto M, Alaitz R D L, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis [J]. Mater. Horiz., 2014, 1(2): 237
13 He X, Wang F, Zhao H W, et al. Preparation and healing behavior of self-healing epoxy resins based on Diels-Alder reaction [J]. Chin. J. Mater. Res., 2019, 33(8): 635
13 何霞, 王飞, 赵翰文等. 基于Diels-Alder反应的自修复环氧树脂的制备和修复行为 [J]. 材料研究学报, 2019, 33(8): 635
14 Shao C Y, Wang M, Chang H L, et al. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction [J]. ACS Sustain. Chem. Eng., 2017, 5(7): 6167
15 Cao L M, Fan J F, Huang J R, et al. Robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds [J]. J. Mater. Chem. A., 2019, 7(9): 4922
16 Xu C H, Cao L M, Lin B F, et al. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization [J]. ACS Appl. Mater. Inter., 2016, 8(27): 17728
17 Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers [J]. ACS Appl. Mater. Inter., 2016, 8(19): 12445
18 Yang Q, Zhao W J, Zhao N, et al. Preparation and properties of a novel AG/PVA/CB[7] hydrogel reinforced by microcrystalline and hydrogen bonds [J]. Chin. J. Mater. Res., 2020, 34(9): 691
18 杨琴, 赵卫杰, 赵娜等. 微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能 [J]. 材料研究学报, 2020, 34(9): 691
19 Yanagisawa Y, Nan Y, Okuro K, et al. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking [J]. Science, 2017, 359(6371): 72
20 Xiao G F, Wang Y, Zhang H, et al. Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone [J]. Carbohyd. Polym., 2019, 218(15): 68
21 Ujjal H, Kamal B, Ren L, et al. Polyisobutylene-based pH-responsive self-healing polymeric gels [J]. ACS Appl. Mater. Inter., 2015, 7(16): 8779
22 Du P, Wu M, Liu X, et al. Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels-Alder bonds [J]. New. J. Chem., 2014, 38(2): 770
23 Feng L B, Yu Z Y, Bian Y H, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains [J]. Polymer, 2017, 124(1): 48
24 Zhong Y T, Wang X L, Zheng Z, et al. Polyether-maleimide-based crosslinked self-healing polyurethane with Diels-Alder bonds [J]. J. Appl. Polym. Sci., 2015, 132(19): 41994
25 Lakatos C, Czifrak K, Karger-Kocsis J, et al. Shape memory crosslinked polyurethanes containing thermoreversible Diels-Alder couplings [J]. J. Appl. Polym. Sci., 2016, 133(43): 4912
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[14] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.