Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 419-432    DOI: 10.11901/1005.3093.2020.279
  研究论文 本期目录 | 过刊浏览 |
羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能
张昊1,2, 李帆1,2, 常娜3(), 王海涛4, 程博闻2, 王攀磊1
1.天津工业大学纺织科学与工程学院 天津 300387
2.天津工业大学 天津市先进纤维与储能技术重点实验室 天津 300387
3.天津工业大学化学工程与技术学院 天津 300387
4.天津工业大学环境科学与工程学院 天津 300387
Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance
ZHANG Hao1,2, LI Fan1,2, CHANG Na3(), WANG Haitao4, CHENG Bowen2, WANG Panlei1
1.School of Textile Science and Engineering, TianGong University, Tianjin 300387, China
2.Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, TianGong University, Tianjin 300387, China
3.School of Chemical Engineering and Technology, TianGong University, Tianjin 300387, China
4.School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
引用本文:

张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
Hao ZHANG, Fan LI, Na CHANG, Haitao WANG, Bowen CHENG, Panlei WANG. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. Chinese Journal of Materials Research, 2021, 35(6): 419-432.

全文: PDF(8082 KB)   HTML
摘要: 

以天然淀粉(RS)为基体、以丙烯酸(AA)和乙酸乙烯酯(VAc)为原料在过硫酸铵(APS)和亚硫酸氢钠(SHS)的引发下用水相合成法制备羧酸型接枝淀粉吸附树脂(CSR),使用SEM、IR、XRD、13C-NMR和GPC等手段表征树脂的结构,研究其对染料的去除性能。结果表明:当引发剂的浓度为0.03 mol/L、单体物质量比n(AA):n(VAc)为3∶1、单体浓度为0.8 mol/L时CSR的羧酸基的含量为19.26%,对孔雀石绿的吸附量为17.35 mg/g。与天然淀粉相比,CSR树脂的耐水性和化学稳定性提高且对酸、碱及酶的耐受性增强,经碱处理后树脂的吸附性进一步提高。GPC分析结果表明,CSR树脂中的线型分子逐渐向分支型转化,使大分子形成复杂的网状结构。CSR的主链分子量随着单体添加量的增加和AA/VAc比例的增大呈下降趋势。CSR对碱性品红(BF)、亚甲基蓝(MB)和孔雀石绿(MG)的吸附量优于001×7强酸性离子交换树脂、D151弱酸性离子交换树脂以及羧甲基纤维素CMC与羧甲基淀粉CMS等合成及天然高分子吸附剂,与活性炭的性能接近,且具有广谱吸附性。CSR的零电荷点pHPZC为3.83,远低于天然淀粉树脂(pHPZC=7.38)是其对阳离子染料吸附量提高的重要原因。CSR在较宽的pH值范围内具有良好的染料吸附性能,当pH值为8.5时吸附量最大值。CSR对混合染料废水的脱色率为87.42%,且具有较强的再生能力,8次再生循环后其脱色率不低于首次吸附的88.6%。

关键词 有机高分子材料淀粉羧酸型离子交换树脂染料吸附水处理技术    
Abstract

Carboxylic acid grafted starch adsorption resin (CSR) was synthesized by using natural starch (RS) as matrix, acrylic acid (AA) and vinyl acetate (VAc) as raw materials in the presence of ammonium persulfate (APS) and sodium bisulfite (SHS). The resulted CSR product was characterized by SEM, IR, XRD, 13C-NMR and GPC. The results show that when the initiator concentration was 0.03 mol/L, the monomer mass ratio n (AA): n (VAc) was 3:1 and the monomer concentration was 0.8 mol/l, the prepared CSR product presents the carboxyl group content of 19.26% with adsorption capacity of 17.35mg/g for malachite green, in other words, the water resistance and chemical stability and the tolerance to acid, alkali and enzyme of CSR resin were enhanced in comparison to those of the natural starch. After alkali treatment the adsorption capacity of the resin can be further improved. Linear molecules in CSR resin gradually transformed into branched type, resulting in complex network structure of macromolecules. The molecular mass of the main chain of CSR decreased with the increase of monomer dosage and AA / VAc ratio. The adsorption capacity of CSR for basic fuchsin (BF), methylene blue (MB) and malachite green (MG) is better than that of 001×7 strong acid ion exchange resin, D151 weak acid ion exchange resin, carboxymethyl cellulose CMC and carboxymethyl starch CMS and other synthetic and natural polymer adsorbents. The CSR has broad-spectrum of adsorption closed to that of active carbon. The zerocharge point pHpzc of CSR was 3.83, which was much lower than that of natural starch resin (pHpzc=7.38), that may be an important reason for the increase of adsorption capacity of cationic dyes. The CSR has good dye adsorption performance in a wide range of pH values, and the adsorption capacity reaches the maximum value when pH=8.5. The decolorization rate of CSR for mixed dye waste water was 87.42%. Finally the CSR had strong regeneration ability. Even after eight regeneration cycles, its decolorization rate was not lower than 88.6% of the initial adsorption ability.

Key wordsorganic polymer materials    starch    carboxylic acid type    ion-exchange resin    dye adsorption    water treatment technology
收稿日期: 2020-07-08     
ZTFLH:  TQ321.2  
基金资助:国家重点研发计划(2019YFC0408404);国家自然科学基金(51503147);天津市中外联合研究中心项目(19PTZWHZ00030);国家级大学生创新训练计划(201610058024)
作者简介: 张昊,男,1982年生,博士
图1  单体比例对CSR羧酸基的含量和对孔雀石绿吸附量的影响
图2  单体添加量对CSR羧酸基的含量和对孔雀石绿吸附量的影响

Monomer concentration

/mol·L-1

Time / min
306090120180
0.210016014512050
0.8270430400340115
1.21000165015501340350
表1  单体添加量对CSR反应体系粘度的影响
图3  RS和CSR的红外光谱图
图4  RS和CSR的13C-核磁共振谱
图5  RS和CSR的扫描电镜照片以及天然淀粉、RS树脂颗粒和CSR树脂颗粒的X-射线衍射谱
图6  RS在水、pH=2的HCl溶液、pH=12的NaOH溶液、用50 mg/L糖化酶溶液处理1 d后的形态和CSR经水、pH=2的HCl溶液、pH=12的NaOH溶液及50 mg/L糖化酶溶液处理1 d后的形态
图7  RS和CSR树脂颗粒经水、酸(pH=2)、碱(pH=12)及糖化酶(50 mg/L)处理1 d后的质量损失率
图8  CSR树脂经酸碱酶处理后的X-射线衍射谱
图9  单体比例对CSR分子量及其分布的影响
图10  单体添加量对CSR分子量及其分布的影响
图11  RS和GSR的氮气吸脱附曲线以及热力学拟合结果
Langmuir isothermal equationFreundlich isothermal equation
KQmax/mg·g-1KLR21/nKFR2
MG0.0062161.29032260.4305555560.97570.9531305.40929870.9996
BF0.0038263.15789470.2420382170.91950.9706290.41281180.9999
MB0.0051196.07843100.3422818790.92850.948286.32129020.9979
表2  CSR对MG、FB和MB染料吸附的Langmuir、Freundlich等温方程参数
图12  RS、硅藻土、CMC、沸石、001×7树脂、D151树脂、 CMS、CSR和活性炭对MG、BF、MB的吸附量
图13  RS和CSR零电荷点的确定
图14  RS和CSR在pH值为4~10时对MG、BF和MB的吸附量
图15  CSR经酸、碱、酶处理后的吸附量
图16  不同吸附剂对由MG、BF、MB和MV组成的模拟混合染料废水的脱色率和CSR经不同再生循环次数后对混合染料废水的脱色率
1 Zu G Q. A study to deep decoloration treatment process of spinning printing and dyeing wastewater [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
1 祖国庆. 纺织印染废水深度脱色处理工艺研究 [D]. 西安: 西安建筑科技大学, 2015
2 Zhou W D, Li S Q, Zhou K M, et al. Study on separation performance of sulfonated loose nanofiltration membrane for high-salinity textile wastewater [J]. Technol. Water Treat., 2019, 45: 65
2 周卫东, 李世琪, 周克梅等. 磺化疏松纳滤膜对高盐度印染废水分离性能研究 [J]. 水处理技术, 2019, 45: 65
3 Wu M X, Sun M X, Lan T X, et al. Study on the treatment of printing and dyeing wastewater by new type photoelectro-Fenton method [J]. Technol. Water Treat., 2019: 86
3 吴梦霞, 孙梅香, 兰天翔等. 新型光电-Fenton法处理印染废水的研究 [J]. 水处理技术, 2019: 86
4 Liu Y R, Li K, Xu W Y, et al. GO/PEDOT: NaPSS modified cathode as heterogeneous electro-Fenton pretreatment and subsequently aerobic granular sludge biological degradation for dye wastewater treatment [J]. Sci. Total Environ., 2020, 700: 134536
5 Yu S Y, Wang J B, Cui J L. Preparation of a novel chitosan-based magnetic adsorbent CTS@SnO2@Fe3O4 for effective treatment of dye wastewater [J]. Int. J. Biol. Macromol., 2020, 156: 1474
6 Tao B B, He X F, He J W, et al. Current situation and development trend of advanced treatment process for printing and dyeing wastewater [J]. Tianjin Chem. Ind., 2019, 33(6): 4
6 陶彬彬, 何小峰, 何江伟等. 印染废水深度处理工艺现状及发展趋势 [J]. 天津化工, 2019, 33(6): 4
7 Kulal P, Badalamoole V. Magnetite nanoparticle embedded Pectin- graft-poly(N-hydroxyethylacrylamide) hydrogel: Evaluation as adsorbent for dyes and heavy metal ions from waste water [J]. Int. J. Biol. Macromol., 2020, 156: 1408
8 Samsami S, Mohamadi M, Sarrafzadeh M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives [J]. Process Saf. Environ. Prot., 2020, 143: 138
9 Lu Y. Research progress of dye wastewater treatment technology [J]. Textile Technol. Prog., 2020, (5): 1
9 陆玉. 染料废水处理技术研究进展 [J]. 纺织科技进展, 2020, (5): 1
10 Zhang X X. Research progress and development trend of low-cost adsorbents treating printing and dyeing wastewater [J]. Dyeing Finishing Technol., 2020, 42(5): 12
10 张欣欣. 低成本吸附剂处理印染废水的研究进展及发展趋势 [J]. 染整技术, 2020, 42(5): 12
11 Ning C H, Zhang L, Han Y. Application of cationic dendritic poly (amide-ester) in dyeing [J]. Fine Chem., 2014, 31: 882
11 宁春花, 张丽, 韩阳. 阳离子化树枝状聚(胺-酯)在染色废水中的应用 [J]. 精细化工, 2014, 31: 882
12 Zhang H, Li Y X, Zhang Y, et al. Preparation of CS-γCD and its removal for dye in waste-water [J]. New Chem. Mater., 2019, 47(6): 257
12 张昊, 李雅兴, 张毅等. γ-环糊精固载淀粉的制备及其对废水中染料去除性能研究 [J]. 化工新型材料, 2019, 47(6): 257
13 Mittal H, Alhassan S M, Ray S S. Efficient organic dye removal from wastewater by magnetic carbonaceous adsorbent prepared from corn starch [J]. J. Environ. Chem. Eng., 2018, 6: 7119
14 Qiu G M, Qiu G L. Graft copolymerization of acrylamide on starch: synthesis and ability of flocculation and remaining aid [J]. Fine Chem., 2001, 18: 162
14 邱广明, 邱广亮. 淀粉与丙烯酰胺接枝共聚物的合成及絮凝助留性能 [J]. 精细化工, 2001, 18: 162
15 Hosseinzadeh H, Ramin S. Fabrication of starch- graft -poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution [J]. Int. J. Biol. Macromol., 2018, 106: 101
16 Huang M, Wang L Z, Xu X, et al. Inhibition effect of cassava starch-acrylamide graft copolymer on aluminium in KOH solution [J]. J. Southwest Forestry Univ. (Nat. Sci.), 2021, 41(2): 1
16 黄苗, 王丽姿, 徐昕等. 木薯淀粉—丙烯酰胺接枝共聚物对KOH溶液中铝的缓蚀作用 [J]. 西南林业大学学报(自然科学), 2021, 41(2): 1
17 Huang W F, Liang N, Cai Y J. Preparation and water absorption of corn starch acrylic acid graft copolymer [J]. Technol. Dev. Chem. Ind., 2019, 48(12): 12
17 黄文富, 梁宁, 蔡锦源. 玉米淀粉-丙烯酸接枝共聚物的制备及其吸水性能研究 [J]. 化工技术与开发, 2019, 48(12): 12
18 Mostafa K M, El-Sanabary A A. Green and efficient tool for grafting acrylonitrile onto starch nanoparticles using microwave irradiation [J]. J. Polym. Res., 2020, 27: 92
19 Zarei S, Sadeghi M, Bardajee G R. Dye removal from aqueous solutions using novel nanocomposite hydrogel derived from sodium montmorillonite nanoclay and modified starch [J]. Int. J. Environ. Sci. Technol., 2018, 11: 2303
20 Moharrami P, Motamedi E. Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water [J]. Bioresour. Technol., 2020, 313: 123661
21 Kolya H, Sasmal D, Tripathy T. Novel biodegradable flocculating agents based on grafted starch family for the industrial effluent treatment [J]. J. Polym. Environ., 2017, 25: 408
22 Zhang H, Li Y X, Cheng B W, et al. Synthesis of a starch-based sulfonic ion exchange resin and adsorption of dyestuffs to the resin [J]. Int. J. Biol. Macromol., 2020, 161: 561
23 Zhang Z M. Preparation and characterization of carboxymethylated lignosulfonate dye dispersant [D]. Guangzhou: South China University of Technology, 2015
23 张志鸣. 羧甲基化木质素磺酸盐染料分散剂的制备与表征 [D]. 广州: 华南理工大学, 2015
24 Feng H X, Yang Y, Li Q Z, et al. Adsorption of Cr(Ⅵ) ions on diatomite composite magnetic chitosan material [J]. Fine Chem., 2018, 35: 668
24 冯辉霞, 杨洋, 李全珍等. 硅藻土复合磁性壳聚糖对铬(Ⅵ)离子吸附性能 [J]. 精细化工, 2018, 35: 668
25 Liu Z J, Liang X T, Zhong S M, et al. Adsorption performance of Pb2+ by starch based hydrogel synthesized under microwave [J]. Fine Chem., 2016, 33: 1135
25 刘子杰, 梁兴唐, 钟书明等. 微波合成淀粉基水凝胶的Pb2+吸附性能 [J]. 精细化工, 2016, 33: 1135
26 Worzakowska M. Starch-g-poly(phenyl acrylate) copolymers-synthesis, characterization, and physicochemical properties [J]. Starch, 2017, 69: 1700027
27 Shi M J, Wang H Y, Quan X G, et al. Preparation and flocculation performance of modified starch flocculant DTCS-AM [J]. J. China Univ. Petrol., 2014, 38(3): 157-163
27 石茂健, 王慧云, 全先高等. 改性淀粉絮凝剂DTCS-AM的制备及絮凝性能 [J]. 中国石油大学学报(自然科学版), 2014, 38(3): 157
28 Zhang C H, Shi H X, Wang A R, et al. Preparation and characterization of AS-g-SMAS graft copolymer as a superplasticizer [J]. J. Chem. Eng. Chin. Univ., 2019, 33: 1457
28 郑昌海, 石海信, 王爱荣等. AS-g-SMAS接枝共聚物减水剂的制备与表征 [J]. 高校化学工程学报, 2019, 33: 1457
29 Chen L W, Dai R, Shan Z H, et al. Fabrication and characterization of one high-hygroscopicity liquid starch-based mulching materials for facilitating the growth of plant [J]. Carbohydr. Polym., 2020, 230: 115582
30 Shaikh M M, Lonikar S V. Starch-acrylics graft copolymers and blends: Synthesis, characterization, and applications as matrix for drug delivery [J]. J. Appl. Polym., 2009, 114: 2893
31 Guo Y N, Mu L C, Liu M Y. Analysis off actors affecting the preparation process of tapioca grafted acrylamide flocculant [J]. Funct. Mater., 2020, 51: 2150
31 郭雅妮, 穆林聪, 刘梦雅. 木薯淀粉接枝丙烯酰胺絮凝剂制备的影响因素分析 [J]. 功能材料, 2020, 51: 2150
32 Mou J, Li X R, Wang H H, et al. Preparation, characterization, and water resistance of cationic acetylated starch-g-poly(styrene-butyl acrylate) surfactant-free emulsion [J]. Starch, 2012, 64: 826
33 El-Hamshary H, Fouda M M G, Moydeen M, et al. Synthesis and antibacterial of carboxymethyl starch-grafted poly(vinyl imidazole) against some plant pathogens [J]. Int. J. Biol. Macromol., 2015, 72: 1466
34 Jumaidin R, Sapuan S M, Jawaid M, et al. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites [J]. Int. J. Biol. Macromol., 2017, 97: 606
35 Fang Y S, Lv X Y, Xu X Y, et al. Three-dimensional nanoporous starch-based material for fast and highly efficient removal of heavy metal ions from wastewater [J]. Int. J. Biol. Macromol., 2020, 164: 415
36 Worzakowska M. Novel starch-g-copolymers obtained using acrylate monomers prepared from two geometric isomers of terpene alcohol [J]. Eur. Polym. J., 2018, 110: 265
37 Zheng M F, Zhang J, Zhao J Y. On characterization of structure and analysis of fractal nature of surface and pore of graphite fibers [J]. J. Yunnan Univ., 2014, 36: 88
37 郑明飞, 张晋, 赵家云. 石墨纤维表面与孔隙的结构表征及分形性质分析 [J]. 云南大学学报(自然科学版), 2014, 36: 88
38 Zheng M F, Zhang A Q, Yang T Y, et al. Determination and analysis of specific surface area and pore structure of graphite fibers [J]. Funct. Mater., 2011, 42: 717
38 郑明飞, 张爱清, 杨天耀等. 石墨纤维的比表面积与孔隙结构的测定与分析 [J]. 功能材料, 2011, 42: 717
39 Zuo Z J, Song K P, Fu Y F. Knitted microporous polymers as efficient adsorbents for wastewater treatment: effects of skeleton structure and pore distribution [J]. J. Donghua Univ. (Eng. Ed.), 2019, 36: 27
40 Cheng M, Jiang J H, Wang J J, et al. Highly salt resistant polymer supported ionic liquid adsorbent for ultrahigh capacity removal of p-nitrophenol from water [J]. ACS Sustain. Chem. Eng., 2019, 9: 8195
41 Ding J, Pan Y F, Li L J, et al. Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater [J]. Chem. Eng. J., 2020, 384: 123232
42 Seyed J P, Omid A B, Rauf F, et al. Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nano-composite hydrogel [J]. Int. J. Biol. Macromol. 2020, 159: 1122
43 Ibrahim A G, Sayed A Z, El-Wahab H A, et al. Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye [J]. Int. J. Biol. Macromol., 2020, 159: 422
44 Singha N R, Karmakar M, Mahapatra M, et al. Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(II): determination of physicochemical changes in loaded hydrogels [J]. Polym. Chem., 2017, 20: 3211
45 Benhalima T, Ferfera-Harrar H. Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue [J]. Int. J. Biol. Macromol., 2019, 132: 126
46 Zhang X F, Tan D S, Xie Y Y, et al. Equilibrium behaviour and kinetics of adsorption Cr (Ⅲ) onto cation exchange resin D001 [J]. Hydrometallurgy China, 2019, 38: 16
46 张学峰, 谈定生, 谢昀映等. D001型阳离子交换树脂吸附Cr(Ⅲ)的平衡特性及动力学 [J]. 湿法冶金, 2019, 38: 16
47 Chang H, Fan W J. Study on adsorption performance of polyethyleneimine amino- modified polyvinylidene fluoride grafting acrylic acid fiber membrane for reactive brilliant red X-3B [J]. Metallurgical Anal., 2020, 40(3): 16
47 常会, 范文娟. 聚乙烯亚胺氨基化改性聚偏氟乙烯接枝丙烯酸纤维膜对活性艳红X-3B的吸附研究 [J]. 冶金分析, 2020, 40(3): 16
48 Wang Y Q. The preparation and application of hydroxylamine resin and carboxylic polystyrene resin [D]. Nanjing: Nanjing University of Technology, 2006
48 王燕芹. 羟胺型及羧酸型离子交换树脂的制备和应用 [D]. 南京: 南京工业大学, 2006
49 Gupta V K, Agarwal S, Ahmad R, et al. Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/ activated carbon nanocomposite [J]. Int. J. Biol. Macromol., 2020, 158: 1310
50 Sharma G, Naushad M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling [J]. J. Mol. Liquids, 2020, 310: 113025
51 Singha N R, Mahapatra M, Karmakar M, et al. Synthesis of guar gum-g-(acrylic acid-co-acrylamide-co-3-acrylamido propanoic acid) IPN viain situ attachment of acrylamido propanoic acid for analyzing superadsorption mechanism of Pb(ii)/Cd(ii)/Cu(ii)/MB/MV [J]. Polym. Chem., 2017, 44: 6750
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] 黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.