Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 449-457    DOI: 10.11901/1005.3093.2020.209
  研究论文 本期目录 | 过刊浏览 |
埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能
潘颖, 赵红挺()
杭州电子科技大学材料与环境工程学院 杭州 310018
Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression
PAN Ying, ZHAO Hongting()
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
引用本文:

潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
Ying PAN, Hongting ZHAO. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. Chinese Journal of Materials Research, 2021, 35(6): 449-457.

全文: PDF(19717 KB)   HTML
摘要: 

使用层层自组装技术在软质聚氨酯泡沫(PUF)表面制备含埃洛石的层层自组装涂层,使用扫描电子显微镜、能谱分析仪和锥形量热仪等手段对涂层进行表征,研究了涂层对PUF的热稳定性、燃烧性能及烟气释放性能的影响。结果表明:埃洛石基涂层由埃洛石、海藻酸钠和聚乙烯亚胺组成,能均匀地附着在PUF表面;涂层能延缓PUF在高温条件下的热解且使残炭量明显增多;三层埃洛石基涂层PU-3的热释放速率峰值、烟气释放速率峰值以及总烟气释放量比纯PUF(PU-0)分别降低了57.3%、58.9%和80.7%。这表明,埃洛石涂层能提高材料的热稳定和火灾安全性。

关键词 复合材料软质聚氨酯泡沫层层自组装法阻燃性    
Abstract

The halloysite based coating was fabricated on the surface of flexible polyurethane foam (PUF) using layer-by-layer self-assembled method, which then was characterized by scanning electron microscope (SEM) with energy-dispersive X-ray (EDX) spectrometers, thermogravimetric analysis and cone test. The effect of the prepared coating on the performance of the coated PUF, such as thermal stability, flame retardancy and smoke suppression were investigated. The results show that the coating is composed of halloysite, sodium alginate and polyethyleneimine. The halloysite particles were uniformly dispersed in the coating on PUF. Due to the presence of halloysite based coating, the decomposition of the coated PUF could be retarded to certain extent at high temperature, hence the char residues were significantly increased while decomposed. In comparison to the bare PUF, the peak heat release rate, peak smoke production rate and total smoke production were reduced 57.3%, 58.9% and 80.7% respectively for the PUF with halloysite based coating. This indicated that the coating (namely PU-3) could enhance the thermal stability and fire safety.

Key wordscomposite    flexible polyurethane foam    layer-by-layer self-assembly    flame retardancy
收稿日期: 2020-06-04     
ZTFLH:  TQ328.3  
基金资助:浙江省自然科学(青年)基金(LQ19E030018)
作者简介: 潘颖,女,1990年生,博士
图1  层层自组装涂层的制备过程示意图
Sample

PEI

(mass fraction, %)

Halloysite

(mass fraction, %)

Alginate

(mass fraction, %)

BL

Weight gain

(mass fraction, %)

PU-0----0
PU-10.51.00.316.7
PU-20.51.00.3216.1
PU-30.51.00.3329.1
表1  溶液浓度、样品制备的层数和样品增重
图2  PU-0、PU-1、PU-2和PU-3的SEM照片
图3  PU-0和PU-3的EDX谱
图4  PU-0、PU-1、PU-2和PU-3在氮气气氛下的TG和DTG曲线
SampleT-5%/℃Tmax1/℃Tmax2/℃

Residue at 700℃/%,

mass fraction

PU-02652993848.1
PU-126530140110.3
PU-226430040715.7
PU-326129840921.5
表2  修饰前后PUF的热重分析数据
图5  PU-0、PU-1、PU-2和PU-3的HRR、THR、SPR和TSR曲线
图6  PU-0、PU-1、PU-2和PU-3的Cone测试完炭渣和质量损失
图7  PU-1、PU-2和PU-3的Cone测试完炭渣扫描电子显微镜图
图8  PU-0(a、b)、PU-1(c、d、e)、PU-2(f、g、h)和PU-3(i、j、k)燃烧过程图,点燃后10 s(a、c、f、i)、点燃后30 s(b、d、g、j)和燃烧后炭渣(e、h、k)
图9  PU-0和PU-3气态裂解产物的3D热重-红外光谱
图10  PU-0和PU-3的总气态热解产物吸收峰
图11  修饰后软质聚氨酯泡沫的燃烧和烟气释放模型
1 Li Y C, Schulz J, Grunlan J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability [J]. ACS Appl. Mater. Interfaces, 2009, 1: 2338
2 Qiu X Q, Li Z W, Li X H, et al. Flame retardant coatings prepared using layer by layer assembly: A review [J]. Chem. Eng. J., 2018, 334: 108
3 Laufer G, Kirkland C, Cain A A, et al. Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings [J]. ACS Appl. Mater. Interfaces, 2012, 4: 1643
4 Yang Y H, Li Y C, Shields J, et al. Layer double hydroxide and sodium montmorillonite multilayer coatings for the flammability reduction of flexible polyurethane foams [J]. J. Appl. Polym. Sci., 2015, 132: 41767
5 Apaydin K, Laachachi A, Ball V, et al. Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide [J]. Polym. Degrad. Stabil. 2013, 98: 627
6 Carosio F, Alongi J, Malucelli G. α-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly [J]. J. Mater. Chem., 2011, 21: 10370
7 Pan Y, Pan H F, Yuan B H, et al. Construction of organic-inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam [J]. Mater. Chem. Phys., 2015, 163: 107
8 Fang F, Tong B, Du T X, et al. Unique nanobrick wall nanocoating for flame-retardant cotton fabric via layer-by-layer assembly technique [J]. Cellulose, 2016, 23: 3341
9 Yan H Q, Zhao L, Fang Z P, et al. Construction of multilayer coatings for flame retardancy of ramie fabric using layer-by-layer assembly [J]. J. Appl. Polym. Sci., 2017, 134: 45556
10 Pan H F, Wang W, Shen Q, et al. Fabrication of flame retardant coating on cotton fabric by alternate assembly of exfoliated layered double hydroxides and alginate [J]. RSC Adv., 2016, 6: 111950
11 Li Y C, Yang Y H, Shields J R, et al. Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam [J]. Polymer, 2015, 56: 284
12 Jiang S D, Bai Z M, Tang G, et al. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins [J]. ACS Appl. Mater. Interfaces, 2014, 6: 14076
13 Pan H F, Pan Y, Wang W, et al. Synergistic effect of layer-by-layer assembled thin films based on clay and carbon nanotubes to reduce the flammability of flexible polyurethane foam [J]. Ind. Eng. Chem. Res., 2014, 53: 14315
14 Zhang T, Yan H Q, Peng M, et al. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate [J]. Nanoscale, 2013, 5: 3013
15 Chen X X, Fang F, Zhang X, et al. Flame-retardant, electrically conductive and antimicrobial multifunctional coating on cotton fabric via layer-by-layer assembly technique [J]. RSC Adv., 2016, 6: 27669
16 Carosio F, Laufer G, Alongi J, et al. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric [J]. Polym. Degrad. Stabil., 2011, 96: 745
17 Alongi J, Carosio F, Malucelli G. Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour [J]. Cellulose, 2012, 19: 1041
18 Li S, Ding F, Lin X, et al. Layer-by-layer self-assembly of organic-inorganic hybrid intumescent flame retardant on cotton fabrics [J]. Fiber. Polym., 2019, 20: 538
19 Apaydin K, Laachachi A, Ball V, et al. Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics [J]. Colloids Surf., 2015, 469A: 1
20 Pan H F, Wang W, Pan Y, et al. Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior [J]. Cellulose, 2015, 22: 911
21 Pan H F, Wang W, Pan Y, et al. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties [J]. ACS Appl. Mater. Interfaces, 2015, 7: 101
22 Patra D, Vangal P, Cain A A, et al. Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16903
23 Cain A A, Nolen C R, Li Y C, et al. Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire [J]. Polym. Degrad. Stabil., 2013, 98: 2645
24 Liu X S, Gu X Y, Jiang P, et al. Effect of halloysite on flame retardancy intumescent flame retardant modified polypropylene [J]. China Plast., 2013, 27(2): 86
24 刘喜山, 谷晓昱, 姜鹏等. 埃洛石纳米管对膨胀阻燃聚丙烯阻燃性能的影响 [J]. 中国塑料, 2013, 27(2): 86
25 Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [J]. Prog. Polym. Sci., 2014, 39: 1498
26 Du M L, Guo B C, Jia D M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene) [J]. Eur. Polym. J., 2006, 42: 1362
27 Hao A, Wong I, Wu H, et al. Mechanical, thermal, and flame-retardant performance of polyamide 11-halloysite nanotube nanocomposites [J]. J. Mater. Sci., 2015, 50: 157
28 Lecouvet B, Sclavons M, Bailly C, et al. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene [J]. Polym. Degrad. Stabil., 2013, 98: 2268
29 Vahabi H, Saeb M R, Formela K, et al. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant [J]. Prog. Org. Coat., 2018, 119: 8
30 Liang S Y, Neisius M, Mispreuve H, et al. Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds [J]. Polym. Degrad. Stabil., 2012, 97: 2428
31 Krämer R H, Zammarano M, Linteris G T, et al. Heat release and structural collapse of flexible polyurethane foam [J]. Polym. Degrad. Stabil., 2010, 95: 1115
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.