|
|
基于α''组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金 |
刘田雨1, 朱智浩1, 张爽2, 董闯1,2( ), 闵小华3, 王清1 |
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024 2.大连交通大学材料科学与工程学院 大连 116028 3.大连理工大学材料科学与工程学院 大连 116024 |
|
A Novel Ti-4.13Al-9.36V Alloy of High Ductility Designed on Base of α''-Microstructure for Laser Solid Forming |
LIU Tianyu1, ZHU Zhihao1, ZHANG Shuang2, DONG Chuang1,2( ), MIN Xiaohua3, WANG Qing1 |
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China 3.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
刘田雨, 朱智浩, 张爽, 董闯, 闵小华, 王清. 基于α''组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金[J]. 材料研究学报, 2021, 35(10): 741-751.
Tianyu LIU,
Zhihao ZHU,
Shuang ZHANG,
Chuang DONG,
Xiaohua MIN,
Qing WANG.
A Novel Ti-4.13Al-9.36V Alloy of High Ductility Designed on Base of α''-Microstructure for Laser Solid Forming[J]. Chinese Journal of Materials Research, 2021, 35(10): 741-751.
1 |
Yang M, Wang G, Teng C Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta. Metall. Sin, 2012, 48: 148
|
1 |
杨梅, 王刚, 滕春禹等. Ti-6Al-4V 中界面对α相片层生长的影响三维相场模拟 [J].金属学报, 2012, 48: 148
|
2 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des, 2019, 164: 107552
|
3 |
Zheng Z Y, Cai L J, Xiang K, et al. Typical Microstructural Characteristics of Ti-5Al-5Mo-5V-3Cr-1Fe Metastable β Ti Alloy Forged in α+β Region [J]. Acta. Metall. Sin. (Engl. Lett.), 2020, 33: 1601
|
4 |
Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater, 2017, 132: 82
|
5 |
Niinomi M. Mechanical properties of biomedical titanium alloys [J]. Mater. Sci. Eng., A, 1998, 243: 231
|
6 |
De Formanoir C, Martin G, Prima F, et al. Micromechanical behavior and thermal stability of a dual-phase α+α′ titanium alloy produced by additive manufacturing [J]. Acta Mater, 2019, 162: 149
|
7 |
Zhao Z, Chen J, Tan H, et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure [J]. Scripta Mater, 2018, 146: 187
|
8 |
Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness [J]. Acta Mater, 2019, 162: 239
|
9 |
De Formanoir C, Brulard A, Vivès S, et al. A strategy to improve the work-hardening behavior of Ti-6Al-4V parts produced by additive manufacturing [J]. Mater. Res. Lett, 2016: 1
|
0 |
Sofinowski K, Smíd M, Kuběna I, et al. In situ characterization of a high work hardening Ti-6Al-4V prepared by electron beam melting [J]. Acta Mater, 2019, 179: 224
|
11 |
Kim H S, Lim S H, Yeo I D, et al. Stress-induced martensite transformation of metastable β-titanium alloy [J]. Mater. Sci. Eng., A, 2007, 449: 322
|
12 |
Grosdidier T, Philippe M J. Deformation induced martensite and superelasticity in a β-meta stable titanium alloy [J]. Mater. Sci. Eng., A, 2000, 291: 218
|
13 |
Duerig T W, Terlinde G T, Williams J C. Phase transformation and tensile properties of Ti-10V-2Fe-3Al [J]. Metall. Trans., A, 1980, 11A: 1987
|
14 |
Dong C, Dong D D, Wang Q. Chemical Units in Solid Solutions and Alloy Composition Design [J]. Acta. Metall. Sin, 2018, 54: 293
|
14 |
董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
|
15 |
Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses. Int. Mater. Rev, 2020, 65: 286
|
16 |
Qian S N, Dong C, Liu T Y, et al. Solute-homogenization model and its experimental verification in Mg-Gd-based alloys [J]. J. Mater. Sci. Technol, 2018, 34: 1132
|
17 |
Jiang B B, Wang Q, Wen D H, et al. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus [J]. Mater. Sci. Eng., A, 2017, 687: 1
|
18 |
Jiang B B, Wen D H, Wang Q, et al. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol, 2019, 35: 1008
|
19 |
Wu X H, Liang J, Mei J F, et al. Microstructure of laser-deposited Ti-6Al-4V, Mater. Des, 2004, 25: 137
|
20 |
Vrancken B, Thijs L, Kruth J P, et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting [J]. Acta Mater, 2014, 68: 150
|
21 |
Zhang B C. Non-Ferrous Metals and Heat Treatment [M]. Xi'an: Northwestern Polytechnical University Press, 1993: 88
|
22 |
Tan H, Zhang F Y, Chen j, et al. Microstructure Evolution of Laser Solid Formed Ti-XAl-YV Alloys from Blended Elemental Powders [J]. Rare Metal Materials and Engineering, 2011, 40: 1373
|
22 |
谭华, 张凤英, 陈静等. 混合元素法激光立体成形Ti-XAl-YV合金的微观组织演化 [J]. 稀有金属材料与工程, 2011, 40: 1373
|
23 |
Kolli R P, Joost W J, Ankem S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys [J]. JOM, 2015, 67(6):1273
|
24 |
Grosdidier T, Combress Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., A, 2000, 31A: 1095
|
25 |
Li C, Chen J, Ren Y J, et al. Effect of solution heat treatment on the stress-induced martensite transformation in two new titanium alloys [J]. J. Alloys. Compd, 2015, 641: 192
|
26 |
Zhang J, Yang, Y, Cao S, et al. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1311
|
27 |
Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scripta Mater, 2017, 133: 59
|
28 |
Castany P, Gloriant T, Sun F, et al. Design of strain-transformable titanium alloys [J]. CR Phys, 2018, 19: 710
|
29 |
Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scripta Mater, 2012, 66: 749
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|