Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 741-751    DOI: 10.11901/1005.3093.2020.536
  研究论文 本期目录 | 过刊浏览 |
基于α''组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金
刘田雨1, 朱智浩1, 张爽2, 董闯1,2(), 闵小华3, 王清1
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024
2.大连交通大学材料科学与工程学院 大连 116028
3.大连理工大学材料科学与工程学院 大连 116024
A Novel Ti-4.13Al-9.36V Alloy of High Ductility Designed on Base of α''-Microstructure for Laser Solid Forming
LIU Tianyu1, ZHU Zhihao1, ZHANG Shuang2, DONG Chuang1,2(), MIN Xiaohua3, WANG Qing1
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

刘田雨, 朱智浩, 张爽, 董闯, 闵小华, 王清. 基于α''组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金[J]. 材料研究学报, 2021, 35(10): 741-751.
Tianyu LIU, Zhihao ZHU, Shuang ZHANG, Chuang DONG, Xiaohua MIN, Qing WANG. A Novel Ti-4.13Al-9.36V Alloy of High Ductility Designed on Base of α''-Microstructure for Laser Solid Forming[J]. Chinese Journal of Materials Research, 2021, 35(10): 741-751.

全文: PDF(15335 KB)   HTML
摘要: 

为了提高Ti-6Al-4V合金的加工硬化率和塑性,基于其团簇成分式12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)设计成分式为4[Al-Ti12](AlTi2)+12[Al-Ti14](V2Ti)的(Ti-4.13Al-9.36V, %)合金,采用激光立体成形工艺制备Ti-4.13Al-9.36V和Ti-6.05Al-3.94V(对比合金),研究了沉积态和固溶温度对其显微组织和力学性能的影响。结果表明,沉积态Ti-4.13Al-9.36V和Ti-6.05Al-3.94V合金的显微组织均由基体外延生长的初生β柱状晶和晶内细小的网篮α板条组成。Ti-6.05Al-3.94V合金的初生β柱状晶的宽度约为770 μm,α板条的宽度约为0.71 μm;而Ti-4.13Al-9.36V合金的初生β柱状晶的宽度显著减小到606 μm,α板条的宽度约为0.48 μm。经920℃固溶-淬火处理后Ti-6.05Al-3.94V样品的显微组织为α'+α相,其室温拉伸屈服强度约为893 MPa,抗拉强度约为1071 MPa,延伸率约为3%。经750℃固溶-淬火处理后Ti-4.13Al-9.36V样品的显微组织为α''+α相,与α'马氏体相比,应力诱发的α''马氏体能显著地提高合金的加工硬化能力,其室温拉伸屈服强度约为383 MPa,抗拉强度约为 989 MPa,延伸率达到了17%。这表明,根据团簇理论模型调控α''+α的显微组织能有效提高激光立体成形Ti合金的加工硬化能力和塑性。

关键词 金属材料成分设计团簇加连接原子模型激光立体成形加工硬化    
Abstract

Ti-6Al-4V alloy is widely used in laser solid forming, however, low work-hardening ability and ductility limit its industrial applications. In this paper, a novel Ti-4.13Al-9.36V (%) alloy with cluster composition of 4[Al-Ti12](AlTi2)+12[Al-Ti14](V2Ti) was designed based on the cluster composition formula 12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti) of Ti-6Al-4V. Samples of two alloys Ti-4.13Al-9.36V and Ti-6.05Al-3.94V (set as contrast alloy) were prepared by laser solid forming and followed by heat treatment. Then the microstructure and mechanical properties of the as-deposited and solution treated alloys were investigated. The results show that the microstructure of the as-deposited alloys Ti-4.13Al-9.36V and Ti-6.05Al-3.94V consists of columnar prior-β grains, which grow epitaxial from the substrate along the deposition direction. A basket-weave α-laths existed in the inner prior-β grains. The width of prior-β grains and the width of α-laths of Ti-4.13Al-9.36V alloy are ca 606 μm and 0.48 μm, in the contrast, those of Ti-6.05Al-3.94V alloy are ca 770 μm and 0.71 μm, respectively. Further, after the Ti-6.05Al-3.94V subjected to post solution treatment at 920°C for 2 h followed by water cooling, its microstructure consists of phases α'+α, and the corresponding yield strength, ultimate tensile strength and ductility to failure were ca 893 MPa, 1071 MPa and 3%, respectively. However, when the Ti-4.13Al-9.36V subjected to post solution treatment at 750°C for 2 h followed by water cooling, its microstructure consists of phases α''+α, and the related yield strength, ultimate tensile strength and ductility to failure were ca 383 MPa, 989 MPa and 17%, respectively. This may be ascribed to that the stress-induced α''-phase could significantly improve the work-hardening ability compared with α'-phase. The work-hardening ability and ductility of the Ti-alloy used for laser solid forming could be significantly improved by adjusting the microstructure with phases α''+αvia cluster-plus-glue atom model.

Key wordsmetallic materials    composition design    cluster-plus-glue atom model    laser solid forming    work-hardening
收稿日期: 2020-12-17     
ZTFLH:  TG166.5  
基金资助:国家重点研发计划(2016YFB1100103);大连市科技创新基金重点学科重大课题(2020JJ25CY004)
作者简介: 刘田雨,男,1993年生,博士生
Alloy

Cluster formulas

/(atom fraction, %)

Composition

/(mass fraction, %)

[Mo]eq
112[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)Ti-6.05Al-3.94V2.64
24[Al-Ti12](AlTi2)+12[Al-Ti14](V2Ti)Ti-4.13Al-9.36V6.27
表1  Ti-Al-V合金的团簇成分式及其化学成分
图1  用纯Ti、纯Al和纯V粉末混合制备的Ti-6.05Al-3.94V合金的SEM照片和激光立体成形扫描方式
图2  Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金样品的测试位置
图3  激光立体成形Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金横截面的XRD谱
图4  沉积态Ti-6.05Al-9.36V和Ti-4.13Al-9.36V的OM和SEM照片
图5  Ti-6.05Al-9.36V和Ti-4.13Al-9.36V合金的SEM照片
Temperature/℃The α laths width / μm
Ti-6.05Al-3.94VTi-4.13Al-9.36V
700-0.52±0.05
750-0.56±0.03
800-0.63±0.09
9201.03±0.09-
表2  Ti-6.05Al-9.36V和Ti-4.13Al-9.36合金α板条宽度随固溶温度的变化
图6  固溶处理后Ti-6.05Al-9.36V和Ti-4.13Al-9.36V合金的TEM组织形貌和衍射谱
Temperature/℃Vickers hardness / HV
Ti-6.05Al-3.94VTi-4.13Al-9.36V
Room temperature331±10337±7
700-348±5
750-298±6
800-289±4
920374±6-
表3  沉积态和固溶态Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金的维氏硬度
图7  沉积态和固溶处理后Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金的室温拉伸工程应力-应变曲线
AlloyσYS / MPaσUTS / MPaδ / %
As-deposited (Ti-6.05Al-3.94V)924±9977±1010±1
As-deposited (Ti-4.13Al-9.36V)950±11989±510±0.5
700℃ (Ti-4.13Al-9.36V)900±9986±810±1
750℃ (Ti-4.13Al-9.36V)383±12989±1117±0.7
800℃ (Ti-4.13Al-9.36V)424±7895±810±0.6
920℃ (Ti-6.05Al-3.94V)893±101071±73±1
表4  沉积态和固溶态Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金的屈服强度(σYS)、抗拉强度(σUTS)和延伸率(δ)
图8  加工硬化率曲线
图9  沉积态Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金的SEM断口形貌
图10  固溶态Ti-6.05Al-3.94V和Ti-4.13Al-9.36V合金的SEM断口形貌
1 Yang M, Wang G, Teng C Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta. Metall. Sin, 2012, 48: 148
1 杨梅, 王刚, 滕春禹等. Ti-6Al-4V 中界面对α相片层生长的影响三维相场模拟 [J].金属学报, 2012, 48: 148
2 Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des, 2019, 164: 107552
3 Zheng Z Y, Cai L J, Xiang K, et al. Typical Microstructural Characteristics of Ti-5Al-5Mo-5V-3Cr-1Fe Metastable β Ti Alloy Forged in α+β Region [J]. Acta. Metall. Sin. (Engl. Lett.), 2020, 33: 1601
4 Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater, 2017, 132: 82
5 Niinomi M. Mechanical properties of biomedical titanium alloys [J]. Mater. Sci. Eng., A, 1998, 243: 231
6 De Formanoir C, Martin G, Prima F, et al. Micromechanical behavior and thermal stability of a dual-phase α+α′ titanium alloy produced by additive manufacturing [J]. Acta Mater, 2019, 162: 149
7 Zhao Z, Chen J, Tan H, et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure [J]. Scripta Mater, 2018, 146: 187
8 Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness [J]. Acta Mater, 2019, 162: 239
9 De Formanoir C, Brulard A, Vivès S, et al. A strategy to improve the work-hardening behavior of Ti-6Al-4V parts produced by additive manufacturing [J]. Mater. Res. Lett, 2016: 1
0 Sofinowski K, Smíd M, Kuběna I, et al. In situ characterization of a high work hardening Ti-6Al-4V prepared by electron beam melting [J]. Acta Mater, 2019, 179: 224
11 Kim H S, Lim S H, Yeo I D, et al. Stress-induced martensite transformation of metastable β-titanium alloy [J]. Mater. Sci. Eng., A, 2007, 449: 322
12 Grosdidier T, Philippe M J. Deformation induced martensite and superelasticity in a β-meta stable titanium alloy [J]. Mater. Sci. Eng., A, 2000, 291: 218
13 Duerig T W, Terlinde G T, Williams J C. Phase transformation and tensile properties of Ti-10V-2Fe-3Al [J]. Metall. Trans., A, 1980, 11A: 1987
14 Dong C, Dong D D, Wang Q. Chemical Units in Solid Solutions and Alloy Composition Design [J]. Acta. Metall. Sin, 2018, 54: 293
14 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
15 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses. Int. Mater. Rev, 2020, 65: 286
16 Qian S N, Dong C, Liu T Y, et al. Solute-homogenization model and its experimental verification in Mg-Gd-based alloys [J]. J. Mater. Sci. Technol, 2018, 34: 1132
17 Jiang B B, Wang Q, Wen D H, et al. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus [J]. Mater. Sci. Eng., A, 2017, 687: 1
18 Jiang B B, Wen D H, Wang Q, et al. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol, 2019, 35: 1008
19 Wu X H, Liang J, Mei J F, et al. Microstructure of laser-deposited Ti-6Al-4V, Mater. Des, 2004, 25: 137
20 Vrancken B, Thijs L, Kruth J P, et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting [J]. Acta Mater, 2014, 68: 150
21 Zhang B C. Non-Ferrous Metals and Heat Treatment [M]. Xi'an: Northwestern Polytechnical University Press, 1993: 88
22 Tan H, Zhang F Y, Chen j, et al. Microstructure Evolution of Laser Solid Formed Ti-XAl-YV Alloys from Blended Elemental Powders [J]. Rare Metal Materials and Engineering, 2011, 40: 1373
22 谭华, 张凤英, 陈静等. 混合元素法激光立体成形Ti-XAl-YV合金的微观组织演化 [J]. 稀有金属材料与工程, 2011, 40: 1373
23 Kolli R P, Joost W J, Ankem S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys [J]. JOM, 2015, 67(6):1273
24 Grosdidier T, Combress Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., A, 2000, 31A: 1095
25 Li C, Chen J, Ren Y J, et al. Effect of solution heat treatment on the stress-induced martensite transformation in two new titanium alloys [J]. J. Alloys. Compd, 2015, 641: 192
26 Zhang J, Yang, Y, Cao S, et al. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1311
27 Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scripta Mater, 2017, 133: 59
28 Castany P, Gloriant T, Sun F, et al. Design of strain-transformable titanium alloys [J]. CR Phys, 2018, 19: 710
29 Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scripta Mater, 2012, 66: 749
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.