Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 259-270    DOI: 10.11901/1005.3093.2020.219
  研究论文 本期目录 | 过刊浏览 |
碳化细菌纤维素的理化性质及其在甲醇电催化中的应用
唐开元1, 黄洋2(), 黄湘舟2, 葛颖2, 李娉婷2, 袁凡舒1, 张威威1, 孙东平1()
1.南京理工大学化工学院 南京 210094
2.南京林业大学理学院 南京 210037
Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis
TANG Kaiyuan1, HUANG Yang2(), HUANG Xiangzhou2, GE Ying2, LI Pinting2, YUAN Fanshu1, ZHANG Weiwei1, SUN Dongping1()
1.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.School of Science, Nanjing Forestry University, Nanjing 210037, China
引用本文:

唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
Kaiyuan TANG, Yang HUANG, Xiangzhou HUANG, Ying GE, Pinting LI, Fanshu YUAN, Weiwei ZHANG, Dongping SUN. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. Chinese Journal of Materials Research, 2021, 35(4): 259-270.

全文: PDF(6561 KB)   HTML
摘要: 

对在实验室发酵制备的细菌纳米纤维素(BC)分别进行烘箱干燥和冷冻干燥,然后对其高温碳化,系统地研究了碳化细菌纤维素(CBC)的微观形貌、元素组成以及晶体结构等理化性质随碳化温度的变化。结果表明,烘箱干燥的BC失去了纳米纤维结构,而冷冻干燥可防止纳米纤维堆叠而使其保持三维结构。还以CBC碳纳米纤维为导电载体负载金属Pt制备CBC基复合材料并将其用于甲醇电催化,研究了CBC基复合材料的电化学性能与其微纳结构和化学组成之间的内在联系。

关键词 有机高分子材料碳化细菌纤维素理化性质甲醇电催化    
Abstract

The bacterial cellulose (BC) cultured and purified in the laboratory were oven-dried and freeze-dried respectively and then was carbonized at high temperature. The results show that the oven-dried BC lost the nanofiber structure, and the freeze-drying technology could prevents the nanofibers from stacking and keeps the BC three-dimensional structure. The physicochemical properties such as micromorphology, elemental composition, crystal structure of the carbonized bacterial cellulose (CBC) and thier evolution process with carbonization temperature were systematically investigated. Through Pt-deposition on the conductive carrier of CBC carbon nanofibers, thus an electrode of composite materials could be acquired, which then were used for methanol electrocatalysis. Finally the relationship between the electrochemical performance of CBC-based composite materials and its micro-nano structure and chemical composition was highlighted.

Key wordsorganic polymer materials    carbonized bacterial cellulose    physicochemical properties    methanol electrocatalysis    internal relationship
收稿日期: 2020-06-07     
ZTFLH:  TQ352.4  
基金资助:国家自然科学基金(51702162)
作者简介: 唐开元,男,1998年生,硕士生
图1  冷冻干燥后的BC气凝胶,BC碳化所得CBC材料以及压平后BC碳化所得CBC材料的SEM照片
图2  水凝胶态BC分散后、冷冻干燥BC碳化所得CBC以及用鼓风烘箱干燥并碳化的CBC的TEM照片
图3  BC的TGA曲线
图4  BC和CBC样品的XRD衍射图
图5  CBC样品的N2等温吸附/脱附曲线及其孔径分布
Samples

Specific surface area

/m2·g-1

Average pore diameter

/nm

Pore volume

/cm3·g-1

Micropore area

/m2·g-1

CBC-600238.110.220.4535.9

CBC-800

CBC-1000

443.3

490.5

9.48

8.54

0.47

0.50

216.5

225.5

CBC-800-P463.69.380.53207.9
表1  CBC样品的比表面积和孔道结构
图6  CBC-800-P材料的孔径分布
图7  CBC样品的拉曼光谱
SamplesID/IGD band width/cm-1
CBC-6000.84254.8
CBC-8001.07203.9
CBC-10001.18155.2
表2  各种CBC样品的D峰半高宽和ID/IG
图8  在600~1000℃碳化所得CBC材料的电导性能
图9  在600、800 和1000℃碳化所得CBC样品和市售CNTs的HRTEM照片
图10  在600~1000℃碳化后CBC材料的XPS全谱和C 1s分峰图
SamplesO/C ratiosC-CC=O & O-C-OC-H & C-OHO-C=OC-O-C
CBC-6000.15284.5 (100)287.9 (11.9)285.1 (30.5)--
CBC-8000.10284.5 (100)-285.2 (26.9)289.0 (8.5)286.8 (4.9)
CBC-10000.05284.6 (100)-285.4 (20.6)289.0 (3.8)286.8 (10.2)
表3  在600~1000℃碳化所得CBC材料的O/C原子比值以及各峰的结合能(括号内为各峰和C-C峰的面积之比)
图11  Pt-CBC-800和Pt-Vulcan的TEM照片以及Gatan Digital Micrograph软件测出的晶格间距
图12  Pt-CBC复合材料和Pt-Vulcan的XRD谱
图13  Pt-CBC复合材料和Pt-Vulcan在0.5 mol/L H2SO4以及0.5 mol/L H2SO4+1.0 mol/L CH3OH溶液中的CV曲线
Samples

ECSA

/m2·g-1

IR

/mA·cm-2

IF

/mA·cm-2

Onset potential/mV
Pt-CBC-6005.58.39.0415
Pt-CBC-80053.819.118.5395
Pt-CBC-100065.221.721.4234
Pt-Vulcan32.912.912.8259
表4  各种催化材料样品的CV数据
图14  Pt-CBC样品在0.5 mol/L H2SO4+1.0 mol/L CH3OH混合溶液中的计时电流曲线
1 Mohanty A K, Vivekanandhan S, Pin J M, et al. Composites from renewable and sustainable resources: Challenges and innovations [J]. Science, 2018, 362: 536
2 Huang Y, Zhu C L, Yang J Z, et al. Recent advances in bacterial cellulose [J]. Cellulose, 2014, 21: 1
3 Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials [J]. Acc. Chem. Res., 2016, 49: 96
4 Torres F G, Arroyo J J, Troncoso O P. Bacterial cellulose nanocomposites: An all-nano type of material [J]. Mater. Sci. Eng., 2019, 98C: 1277
5 Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
6 Yang J Z, Sun D P, Li J, et al. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance [J]. Electrochim. Acta, 2009, 54: 6300
7 Zollfrank C, Fromm J. Ultrastructural development of the softwood cell wall during pyrolysis [J]. Holzforschung, 2009, 63: 248
8 Kercher A K, Nagle D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J]. Carbon, 2003, 41: 15
9 Feng J, Shi Q S, Feng J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Mod. Food Sci. Technol., 2013, 29: 2225
9 冯劲, 施庆珊, 冯静等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29: 2225
10 Terinte N, Ibbett R, Schuster K C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques [J]. Lenzinger Berichte, 2011, 89: 118
11 Gea S, Reynolds C T, Roohpour N, et al. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process [J]. Bioresour. Technol., 2011, 102: 9105
12 Kim D Y, Nishiyama Y, Wada M, et al. Graphitization of highly crystalline cellulose [J]. Carbon, 2001, 39: 1051
13 Sevilla M, Fuertes A B. Graphitic carbon nanostructures from cellulose [J]. Chem. Phys. Lett., 2010, 490: 63
14 Lee J K, An K W, Ju J B, et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries [J]. Carbon, 2001, 39: 1299
15 Sugimoto W, Ohnuma T, Murakami Y, et al. Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors [J]. Electrochem. Solid St., 2001, 4: A145
16 Liu Y, Lu T, Sun Z, et al. Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization [J]. J. Mater. Chem., 2015, 3A: 8693
17 Ishimaru K, Hata T, Bronsveld P, et al. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin [J]. J. Mater. Sci., 2007, 42: 122
18 Paris O, Zollfrank C, Zickler G A. Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis [J]. Carbon, 2005, 43: 53
19 Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobe studies on carbon materials [J]. Carbon, 1994, 32: 1523
20 Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon, 2009, 47: 145
21 Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun., 2007, 143: 47
22 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
23 Rhim Y R, Zhang D J, Fairbrother D H, et al. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 1012
24 Rhim Y R, Zhang D J, Rooney M, et al. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 31
25 Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
26 Dumanlı A G, Windle A H. Carbon fibres from cellulosic precursors: a review [J]. J. Mater. Sci., 2012, 47: 4236
27 Chen L F, Huang Z H, Liang H W, et al. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors [J]. Adv. Funct. Mater., 2014, 24: 5104
28 Jenkins G M, Kawamura K. Polymeric Carbons: Carbon Fibre, Glass and Char [M]. Cambridge: Cambridge University Press, 1976
29 Wang W, Sun Y, Liu B, et al. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries [J]. Carbon, 2015, 91: 56
30 Cao X Y, Pignatello J J, Li Y, et al. Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques [J]. Energy Fuels, 2012, 26: 5983
31 Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers [J]. Carbon, 1999, 37: 1785
32 Matsui T, Okanishi T, Fujiwara K, et al. Effect of reduction-oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts [J]. Sci. Technol. Adv. Mater., 2006, 7: 524
33 Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95
34 Liu M M, Zhang R Z, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications [J]. Chem. Rev., 2014, 114: 5117
35 Huang Y, Wang T H, Ji M Z, et al. Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC) [J]. Mater. Lett., 2014, 128: 93
36 Huang H X, Chen S X, Yuan C E. Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation [J]. J. Power Sources, 2008, 175: 166
37 Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites [J]. Electrochem. Commun., 2009, 11: 846
38 Lee E, Kim S, Jang J H, et al. Effects of particle proximity and composition of Pt-M (M=Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction [J]. J. Power Sources, 2015, 294: 75
39 Koga H, Umemura Y, Ishihara H, et al. Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides [J]. Appl. Catal., 2009, 90B: 699
40 Li W Z, Zhou W J, Li H Q, et al. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell [J]. Electrochim. Acta, 2004, 49: 1045
41 Sharma S, Ganguly A, Papakonstantinou P, et al. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol [J]. J. Phys. Chem., 2010, 114C: 19459
42 Pozio A, De Francesco M, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J]. J. Power Sources, 2002, 105: 13
43 Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J]. Carbon, 2010, 48: 1124
44 Huang Y Q, Huang H L, Liu Y J, et al. Facile synthesis of poly(amidoamine)-modified carbon nanospheres supported Pt nanoparticles for direct methanol fuel cells [J]. J. Power Sources, 2012, 201: 81
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] 黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.