|
|
碳化细菌纤维素的理化性质及其在甲醇电催化中的应用 |
唐开元1, 黄洋2( ), 黄湘舟2, 葛颖2, 李娉婷2, 袁凡舒1, 张威威1, 孙东平1( ) |
1.南京理工大学化工学院 南京 210094 2.南京林业大学理学院 南京 210037 |
|
Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis |
TANG Kaiyuan1, HUANG Yang2( ), HUANG Xiangzhou2, GE Ying2, LI Pinting2, YUAN Fanshu1, ZHANG Weiwei1, SUN Dongping1( ) |
1.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2.School of Science, Nanjing Forestry University, Nanjing 210037, China |
引用本文:
唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
Kaiyuan TANG,
Yang HUANG,
Xiangzhou HUANG,
Ying GE,
Pinting LI,
Fanshu YUAN,
Weiwei ZHANG,
Dongping SUN.
Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. Chinese Journal of Materials Research, 2021, 35(4): 259-270.
1 |
Mohanty A K, Vivekanandhan S, Pin J M, et al. Composites from renewable and sustainable resources: Challenges and innovations [J]. Science, 2018, 362: 536
|
2 |
Huang Y, Zhu C L, Yang J Z, et al. Recent advances in bacterial cellulose [J]. Cellulose, 2014, 21: 1
|
3 |
Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials [J]. Acc. Chem. Res., 2016, 49: 96
|
4 |
Torres F G, Arroyo J J, Troncoso O P. Bacterial cellulose nanocomposites: An all-nano type of material [J]. Mater. Sci. Eng., 2019, 98C: 1277
|
5 |
Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
|
6 |
Yang J Z, Sun D P, Li J, et al. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance [J]. Electrochim. Acta, 2009, 54: 6300
|
7 |
Zollfrank C, Fromm J. Ultrastructural development of the softwood cell wall during pyrolysis [J]. Holzforschung, 2009, 63: 248
|
8 |
Kercher A K, Nagle D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J]. Carbon, 2003, 41: 15
|
9 |
Feng J, Shi Q S, Feng J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Mod. Food Sci. Technol., 2013, 29: 2225
|
9 |
冯劲, 施庆珊, 冯静等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29: 2225
|
10 |
Terinte N, Ibbett R, Schuster K C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques [J]. Lenzinger Berichte, 2011, 89: 118
|
11 |
Gea S, Reynolds C T, Roohpour N, et al. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process [J]. Bioresour. Technol., 2011, 102: 9105
|
12 |
Kim D Y, Nishiyama Y, Wada M, et al. Graphitization of highly crystalline cellulose [J]. Carbon, 2001, 39: 1051
|
13 |
Sevilla M, Fuertes A B. Graphitic carbon nanostructures from cellulose [J]. Chem. Phys. Lett., 2010, 490: 63
|
14 |
Lee J K, An K W, Ju J B, et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries [J]. Carbon, 2001, 39: 1299
|
15 |
Sugimoto W, Ohnuma T, Murakami Y, et al. Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors [J]. Electrochem. Solid St., 2001, 4: A145
|
16 |
Liu Y, Lu T, Sun Z, et al. Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization [J]. J. Mater. Chem., 2015, 3A: 8693
|
17 |
Ishimaru K, Hata T, Bronsveld P, et al. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin [J]. J. Mater. Sci., 2007, 42: 122
|
18 |
Paris O, Zollfrank C, Zickler G A. Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis [J]. Carbon, 2005, 43: 53
|
19 |
Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobe studies on carbon materials [J]. Carbon, 1994, 32: 1523
|
20 |
Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon, 2009, 47: 145
|
21 |
Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun., 2007, 143: 47
|
22 |
Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
|
23 |
Rhim Y R, Zhang D J, Fairbrother D H, et al. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 1012
|
24 |
Rhim Y R, Zhang D J, Rooney M, et al. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 31
|
25 |
Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
|
26 |
Dumanlı A G, Windle A H. Carbon fibres from cellulosic precursors: a review [J]. J. Mater. Sci., 2012, 47: 4236
|
27 |
Chen L F, Huang Z H, Liang H W, et al. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors [J]. Adv. Funct. Mater., 2014, 24: 5104
|
28 |
Jenkins G M, Kawamura K. Polymeric Carbons: Carbon Fibre, Glass and Char [M]. Cambridge: Cambridge University Press, 1976
|
29 |
Wang W, Sun Y, Liu B, et al. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries [J]. Carbon, 2015, 91: 56
|
30 |
Cao X Y, Pignatello J J, Li Y, et al. Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques [J]. Energy Fuels, 2012, 26: 5983
|
31 |
Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers [J]. Carbon, 1999, 37: 1785
|
32 |
Matsui T, Okanishi T, Fujiwara K, et al. Effect of reduction-oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts [J]. Sci. Technol. Adv. Mater., 2006, 7: 524
|
33 |
Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95
|
34 |
Liu M M, Zhang R Z, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications [J]. Chem. Rev., 2014, 114: 5117
|
35 |
Huang Y, Wang T H, Ji M Z, et al. Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC) [J]. Mater. Lett., 2014, 128: 93
|
36 |
Huang H X, Chen S X, Yuan C E. Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation [J]. J. Power Sources, 2008, 175: 166
|
37 |
Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites [J]. Electrochem. Commun., 2009, 11: 846
|
38 |
Lee E, Kim S, Jang J H, et al. Effects of particle proximity and composition of Pt-M (M=Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction [J]. J. Power Sources, 2015, 294: 75
|
39 |
Koga H, Umemura Y, Ishihara H, et al. Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides [J]. Appl. Catal., 2009, 90B: 699
|
40 |
Li W Z, Zhou W J, Li H Q, et al. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell [J]. Electrochim. Acta, 2004, 49: 1045
|
41 |
Sharma S, Ganguly A, Papakonstantinou P, et al. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol [J]. J. Phys. Chem., 2010, 114C: 19459
|
42 |
Pozio A, De Francesco M, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J]. J. Power Sources, 2002, 105: 13
|
43 |
Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J]. Carbon, 2010, 48: 1124
|
44 |
Huang Y Q, Huang H L, Liu Y J, et al. Facile synthesis of poly(amidoamine)-modified carbon nanospheres supported Pt nanoparticles for direct methanol fuel cells [J]. J. Power Sources, 2012, 201: 81
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|