Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 903-910    DOI: 10.11901/1005.3093.2021.147
  研究论文 本期目录 | 过刊浏览 |
用于模拟细胞外基质的硫醇-烯水凝胶的制备
苏晨文1, 张婷玥1, 郭丽伟1, 李乐1, 杨苹2, 刘艳秋1()
1.西南交通大学生命科学与工程学院 成都 610031
2.西南交通大学材料科学与工程学院 成都 610031
Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation
SU Chenwen1, ZHANG Tingyue1, GUO Liwei1, LI Le1, YANG Ping2, LIU Yanqiu1()
1.School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
Chenwen SU, Tingyue ZHANG, Liwei GUO, Le LI, Ping YANG, Yanqiu LIU. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. Chinese Journal of Materials Research, 2021, 35(12): 903-910.

全文: PDF(3077 KB)   HTML
摘要: 

先使四臂末端羟基化的聚乙二醇(4-PEG-OH)与降冰片烯(NB)反应制备4-PEG-NB大分子单体,然后将其与二硫苏糖醇通过‘硫醇-烯点击化学方法逐步生长式’制备出硬度可调节的水凝胶并辅以REDV生物多肽修饰,用于模拟二维(2D)和三维(3D)细胞外基质(ECM)。结果表明,4-PEG-NB单体合成的接枝率为90%,制备出的硫醇-烯水凝胶具有多孔结构,发生了硫醇-烯交联反应且交联度高;改变交联比例可将杨氏模量分别调控为0.79、2.40、4.52 kPa;随着水凝胶交联比例的提高,孔隙率随之提高而溶胀率降低。这种水凝胶具有体外降解性;药物释放的前期速度较高,后期较低。2D和3D ECM模拟的细胞培养结果表明,这种水凝胶具有优异的生物相容性。

关键词 有机高分子材料PEG-NB水凝胶硫醇-烯点击化学ECM模拟硬度可调控生物相容性    
Abstract

The tunable stiffness step-growth hydrogels were prepared by thiol-ene click chemistry between 4 arm-polyethylene glycol-norbornene (4-PEG-NB) and dithiothreitol and supplemented with REDV biopeptide modification for 2D and 3D extracellular matrix (ECM) simulations, in which the 4-PEG-NB macromonomer was produced by the reaction of 4-PEG-OH with norbornene. The results show that the prepared thiol-ene hydrogels present a porous structure, and the thiol-ene cross-linking reaction with high cross-linking efficiency was also confirmed. The tunable Young's modulus of hydrogels could be precisely regulated to 0.79, 2.40, and 4.52 kPa by changing the thiol-ene ratio. As the crosslink ratio of the hydrogels increased, the porosity gradually increased and the swelling rate gradually decreased. The drug release of the hydrogels was faster in the early stage and then gradually slowed down. The cell culture results of 2D and 3D ECM simulations show that the hydrogel had excellent biocompatibility.

Key wordsorganic polymer materials    PEG-NB hydrogel    thiol-ene click chemistry    tunable stiffness    ECM simulation    biocompatibility
收稿日期: 2021-02-23     
ZTFLH:  R318.08  
基金资助:国家自然科学基金(32071320);中央高校基本科研业务费专项(201810613085)
作者简介: 苏晨文,男,1996年生,硕士生
图1  4-PEG-NB的1H NMR谱
图2  4-PEG-NB水凝胶的制备流程和制备出的水凝胶照片
图3  硫醇-烯比例为0.5、0.75和1的水凝胶的截面SEM照片
图4  三种不同硫醇-烯比例水凝胶的孔隙率
图5  三种不同硫醇-烯比例水凝胶的FTIR谱和交联度
图6  不同硬度水凝胶的储能模量(G')、损失模量(G'')和转换后的杨氏模量
图7  软、中、硬3种水凝胶在去离子水、含血清培养基和磷酸盐缓冲溶液中的溶胀动力学曲线
图8  软、中、硬3种水凝胶在去离子水、含血清培养基和磷酸盐缓冲溶液中的降解曲线
图9  软、中、硬3种水凝胶在去离子水中降解7 d的SEM照片
图10  不同硬度水凝胶负载甲硝唑药物的包封率和累计释放曲线
图11  不同硬度的水凝胶的在5 d内的2D、3D细胞培养活性
图12  光引发剂通过光裂解生成自由基和4-PEG-NB与DTT之间自由基介导逐步式生长的硫醇-烯光点击反应示意图
1 Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications [J]. Biotechnol. Adv., 2017, 35: 530
2 Ding L R, Li J W, Wu C R, et al. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer [J]. J. Mater. Chem., 2020, 8B: 3527
3 Zhang A D, Liu Y, Qin D, et al. Research status of self-healing hydrogel for wound management: A review [J]. Int. J. Biol. Macromol., 2020, 164: 2108
4 Sackett S D, Tremmel D M, Ma F F, et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas [J]. Sci. Rep., 2018, 8: 10452
5 Giobbe G G, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture [J]. Nat. Commun., 2019, 10: 5658
6 Unal A Z, West J L. Synthetic ECM: Bioactive synthetic hydrogels for 3D tissue engineering [J]. Bioconjug. Chem., 2020, 31: 2253
7 Viji Babu P K, Rianna C, Mirastschijski U, et al. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy [J]. Sci. Rep., 2019, 9: 12317
8 Buxboim A, Ivanovska I L, Discher D E. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? [J]. J. Cell. Sci., 2010, 123: 297
9 Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture [J]. Physiology, 2017, 32: 266
10 Padhi A, Nain A S. ECM in differentiation: A review of matrix structure, composition and mechanical properties [J]. Ann. Biomed. Eng., 2020, 48: 1071
11 Xia T T, Liu W Q, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine [J]. J. Biomed. Mater. Res., 2017, 105A: 1799
12 Ding X C, Wang Y D. Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications [J]. J. Mater. Chem., 2017, 5B: 887
13 Vats K, Marsh G, Harding K, et al. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions [J]. J. Biomed. Mater. Res., 2017, 105A: 1112
14 Xu Z H, Bratlie K M. Click chemistry and material selection for in situ fabrication of hydrogels in tissue engineering applications [J]. ACS Biomater. Sci. Eng., 2018, 4: 2276
15 Devalliere J, Chen Y B, Dooley K, et al. Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain [J]. Acta Biomater., 2018, 78: 151
16 Jivan F, Yegappan R, Pearce H, et al. Sequential thiol–ene and tetrazine click reactions for the polymerization and functionalization of hydrogel microparticles [J]. Biomacromolecules, 2016, 17: 3516
17 Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits [J]. Int. J. Pharm., 2019, 559: 23
18 Liu Y Y, Cai Z X, Sheng L, et al. Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions [J]. Carbohydr. Polym., 2019, 215: 348
19 Ding Y H, Floren M, Tan W. High-throughput screening of vascular endothelium-destructive or protective microenvironments: Cooperative actions of extracellular matrix composition, stiffness, and structure [J]. Adv. Healthc. Mater., 2017, 6: 1601426
20 Wang Y M, Wang J, Yuan Z Y, et al. Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism [J]. Colloids Surf., 2017, 152B: 252
21 Shih H, Liu H Y, Lin C C. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine [J]. Biomater. Sci., 2017, 5: 589
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 于佳莹, 杨希祥, 战德松, 杨柯, 任玲, 王敬人, 徐嘉蔚. Ti-Zr-Cu合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2021, 35(11): 873-880.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.