Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 441-448    DOI: 10.11901/1005.3093.2020.240
  研究论文 本期目录 | 过刊浏览 |
AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能
孙丽颖, 钱建华(), 赵永芳
浙江理工大学纺织科学与工程学院 杭州 310018
Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors
SUN Liying, QIAN Jianhua(), ZHAO Yongfang
School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
引用本文:

孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
Liying SUN, Jianhua QIAN, Yongfang ZHAO. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. Chinese Journal of Materials Research, 2021, 35(6): 441-448.

全文: PDF(14453 KB)   HTML
摘要: 

用醇还原法制备长径比约为800的银纳米线(AgNWs)并分散成网状结构,用溶液流延法使用聚偏氟乙烯(PVDF)和不同质量分数的聚氨酯(TPU)制备柔韧性PVDF/TPU复合薄膜,然后将AgNWs网固定在PVDF/TPU柔性薄膜的表面作为电容的极板制备出柔性薄膜电容式传感器。用扫描电子显微镜(SEM)、紫外-可见光谱和X射线衍射(XRD)等手段表征了AgNWs的结构,使用电子强力拉伸仪、方块电阻仪、三电极系统和LCR数字电桥检测了柔性薄膜电容式传感器的性能。结果表明:网状结构的AgNWs电容单侧极板上的方阻为15.635 mΩ/sq;TPU与PVDF质量比为2∶8的薄膜其断裂伸长率为91.2%,韧性最好,其比电容为375 μF/g;随着传感器弯曲角度的增大其输出电容值随之增大,输出电容值与弯曲角度在一定范围内呈线性关系,弯曲角度为180°时输出最大电容为436 μF。

关键词 有机高分子材料银纳米线柔性薄膜电容式传感器聚氨酯    
Abstract

Silver nanowires (AgNWs) with length-to-diameter ratio of about 800 were prepared by alcohol reduction method, next a network-like structure of AgNWs was constructed via dispersion method. Then PVDF film is prepared by solution casting method, and different mass fraction of polyurethane (TPU) is added to improve the flexibility of the film to form a PVDF/TPU composite film. The AgNWs mesh is fixed on both sides of the PVDF/TPU flexible film to form a capacitive electrode plate, and the AgNWs were used to form a variable-pitch flexible film capacitive sensor. The structure of AgNWs was characterized by scanning electron microscope(SEM), ultraviolet-visible spectroscopy, and XRD; the performance of the flexible thin film capacitive sensor was tested by electronic tensile tester, square resistance meter, three-electrode test system, LCR digital bridge, etc. The results show that: the square resistance of the single-sided polar plate of the capacitor formed by network-like AgNWs is 15.635 mΩ/sq; when the mass ratio of TPU to PVDF is 2:8 the elongation at break of the film is 91.2%, the toughness is the best, The specific capacitance was 375 μF/g; as the bending angle of the sensor increased, the output capacitance also continued to increase. The bending angle and the output capacitance value showed a linear relationship within a certain range. When the bending angle reached 180° the maximum capacitance is 436 μF.

Key wordsorganic polymer materials    silver nanowire    flexible film capacitive sensor    polyurethane
收稿日期: 2020-06-17     
ZTFLH:  TB303  
基金资助:国家自然科学基金青年科学基金(21706238)
作者简介: 孙丽颖,女,1993年生,硕士
图1  TPU/PVDF柔性传感器的结构示意图
NumberingABC
Mass percentage8%15%20%
表1  TPU与PVDF的质量比
图2  实验模拟图
图3  AgNWs的SEM和TEM照片
图4  银纳米线的紫外光谱图
图5  银纳米线的XRD谱
图6  不同质量比TPU/PVDF薄膜的表面和截面SEM照片
图7  TPU/PVDF薄膜的XRD谱
图8  TPU/PVDF薄膜的红外谱
图9  TPU/PVDF薄膜的强力和断裂伸长
图10  TPU/PVDF薄膜的方阻
图11  扫速为20、50和100 mV·s-1时传感器的CV曲线
图12  电容和灵敏度与弯曲角度的关系
1 Zhu J H. Preparation and performance study of PVDF piezoelectric film and sensor [D]. Harbin: Harbin Institute of Technology, 2011
1 朱金海. PVDF压电薄膜及其传感器的制备与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
2 Banea M D, Da Silva L F M, Campilho R D S G. The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive [J]. J. Adh., 2015, 91: 331
3 Bae S, Kim S J, Shin D, et al. Towards industrial applications of graphene electrodes [J]. Phys. Scr., 2012, 2012: 014024
4 Yu X, Di T T, Shen H Y. Synthesis of nano-snagcu solder by microemulsion method [J]. Chin. J. Mater. Res., 2020, 34: 299
4 俞鑫, 邸彤彤, 沈杭燕. 微乳法制备参数对纳米锡银铜焊粉熔点的影响 [J]. 材料研究学报, 2020, 34: 299
5 Lee T W, Lee S E, Jeong Y G. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers [J]. ACS Appl. Mater. Interfaces, 2016, 8: 13123
6 Król P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers [J]. Prog. Mater. Sci., 2007, 52: 915
7 Zhao H L. Research on PVDF piezoelectric film sensor and its application in PCBA modal analysis [D]. Zhenjiang: Jiangsu University, 2009
7 赵洪利. PVDF 压电薄膜传感器的研究及其在 PCBA 模态分析中的应用 [D]. 镇江: 江苏大学, 2009
8 Tang N, Peng Y, Jia Z L, et al. Pyp vacuum distilled simulation of the on using polypropylene hydrophobic micro micropys [J]. J. Appl. Polym. Sci., 2015, 132: 41632
9 Piana F, Pionteck J. Exploitation of the hard/soft segments ratio in thermoplastic polyurethane (TPU) for the tuning of electrical and mechanical properties of expanded graphite (EG) based composites [J]. SN Appl. Sci., 2019, 1: 878
10 He X J, Yao K. Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly(vinylidene fluoride) thin films [J]. Appl. Phys. Lett., 2006, 89: 112909
11 Meng X W, Mao Y Y, Yang Y W, et al. Synthesis of ultra-long silver nanowires by SNS-directed method and their characterization [J]. Precious Met., 2017, 38: 19
12 Chen D P, Qiao X L, Qiu X L, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method [J]. J. Colloid Interface Sci., 2010, 344: 286
13 Li H X, Wu T, Xie M H, et al. Enhancing the tactile and near-infrared sensing capabilities of electrospun PVDF nanofibers with the use of gold nanocages [J]. J. Mater. Chem. C. Mater., 2018, 6: 10263
14 Yang X F, Wang Y S, Qing X L. A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes [J]. Sens. Actuators A, 2019, 299: 111579
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 徐稳, 王知杰, 朱雯雯, 彭子童, 姚楚, 游峰, 江学良. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.