Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (11): 855-861    DOI: 10.11901/1005.3093.2021.467
  研究论文 本期目录 | 过刊浏览 |
聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能
曾志鹏1,2, 宋小艳3, 孙勇1, 宋双林1, 陆伟2(), 贺正龙2()
1.中煤科工集团沈阳研究院有限公司 煤矿安全技术国家重点实验室 抚顺 113122
2.山东科技大学安全与环境工程学院 青岛 266590
3.中国水利水电科学研究院 北京 100038
Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process
ZENG Zhipeng1,2, SONG Xiaoyan3, SUN Yong1, SONG Shuanglin1, LU Wei2(), HE Zhenglong2()
1.State Key Laboratory of Coal Mine Safety Technology, China Coal Technology &Engineering Group Shenyang Research Institute, Fushun 113122, China
2.College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3.China Institute of Water Resources and Hydropower Research, Beijing 100038, China
引用本文:

曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.
Zhipeng ZENG, Xiaoyan SONG, Yong SUN, Shuanglin SONG, Wei LU, Zhenglong HE. Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process[J]. Chinese Journal of Materials Research, 2022, 36(11): 855-861.

全文: PDF(6286 KB)   HTML
摘要: 

使用力学测试、扫描电子显微镜、X射线能谱仪和透射/漫反射红外光谱等手段分析了聚氨酯/水玻璃注浆材料在固化过程中的微观结构和宏观力学性能的变化。结果表明:聚氨酯/水玻璃注浆材料的固化具有明显的阶段性,在前7 d注浆材料的抗压强度、断裂韧度和弯曲强度迅速提高,分别达到55.4 MPa、1025.3 MPa·m1/2和29.4 MPa,随后缓慢提高到58 MPa、1220.4 MPa·m1/2和37.4 MPa。注浆材料的宏观力学性能,主要取决于有机相的交联固化程度。注浆材料的固化过程涉及有机相与水玻璃之间持续的水、二氧化碳和热交换,最终形成了由多异氰酸酯与水、聚醚多元醇反应生成的聚脲/聚氨酯和水玻璃凝胶固化后的硅酸盐颗粒组成的聚氨酯/水玻璃复合材料。

关键词 复合材料注浆材料固化过程聚氨酯力学性能微观结构    
Abstract

The microstructure and macroscopic mechanical property of polyurethane/sodium silicate grouting materials during curing process were studied by means of scanning electron microscopy, energy dispersive spectroscopy, transmission/diffuse reflectance infrared spectroscopy and mechanical testing. The results show that: within the first 7 days, the compressive strength, fracture toughness and bending strength of the polyurethane/sodium silicate grouting material increased rapidly up to 55.4 MPa, 1025.3 MPa·m1/2 and 29.4 MPa, afterwards, they slowly increased to 58 MPa, 1220.4 MPa·m1/2 and 37.4 MPa respectively; the macroscopic mechanical properties of grouting materials mainly depend on the degree of crosslinking-curing of organic phases; the curing process of the grouting material involves the continuous exchange of water, carbon dioxide and heat between the organic phase and sodium silicate, and finally forms the polyurethane/sodium silicate composite composed of polyurea/polyurethane, which was resulted from the reaction of polyisocyanate with water and polyether polyol and silicate particles cured by sodium silicate gel.

Key wordscomposite    grouting materials    curing process    polyurethane    mechanical properties    microstructure
收稿日期: 2021-08-16     
ZTFLH:  TQ323.8  
基金资助:国家重点研发计划(2018YFC0807900);国家自然科学基金(52004148);山东省自然科学基金(ZR2020QE127);煤矿安全技术国家重点实验室开放基金(2020-KF-23-05)
作者简介: 曾志鹏,男,1995年生,硕士生
图1  聚氨酯/水玻璃材料的A和B组分
图2  聚氨酯/水玻璃材料力学性能与固化时间的关系
图3  聚氨酯/水玻璃材料断裂表面的SEM图
图4  球形颗粒和针状晶体的EDS谱
图5  固化时间不同的聚氨酯/水玻璃材料的傅里叶红外光谱
图6  固化28 d的聚氨酯/水玻璃材料的DRIFTS分析
图7  聚氨酯/水玻璃材料的固化过程和机理
1 Hong B, Lu G Y, Gao J L, et al. Anti-ultraviolet aging performance of polyurethane binders used in roads [J]. China J. Highw. Transp., 2020, 33(10): 240
1 洪 斌, 陆国阳, 高峻凌 等. 路用聚氨酯胶结料的抗紫外老化性能 [J]. 中国公路学报, 2020, 33(10): 240
2 Xu S J, Wang S J, Zhong Y H, et al. Compression characteristics and constitutive model of low-exotherm Modified polyurethane grouting materials [J]. Adv. Civ. Eng., 2020, 1958473
3 Wen H, Geng R L, Sang C B. Effects of fiber on stress of mine-used inorganic foam filling material [J]. Safety in Coal Mines, 2016, 47(12): 23
3 文 虎, 耿瑞林, 桑长波. 纤维对矿用无机发泡充填材料应力的影响 [J]. 煤矿安全, 2016, 47(12): 23
4 Zhou Z B, Liu J H, Wu R D, et al. Analysis of bleeding of low concentration full tailings filling material and its regulate-control [J]. Chin. J. Mater. Res., 2020, 34(07): 481
4 周在波, 刘娟红, 吴瑞东 等. 低浓度全尾砂充填材料泌水及其调控机理 [J]. 材料研究学报, 2020, 34(07): 481
5 Lu Y. Study on the inorganic solidified foam and controlling spontaneous combustion of coal [D]. Xuzhou: China University of Mining and Technology, 2015
5 鲁 义. 防治煤炭自燃的无机固化泡沫及特性研究 [D]. 徐州: 中国矿业大学, 2015
6 Guan X M, Zhang H B, Yang Z P, et al. Research of high performance inorganic-organic composite grouting materials [J]. J. China Coal Soc., 2020, 45(3): 902
6 管学茂, 张海波, 杨政鹏 等. 高性能无机-有机复合注浆材料研究 [J]. 煤炭学报, 2020, 45(03): 902
7 Wang K, Pang H, Yang Y L. A study on polyurethane-sodium silicate composite grouting material used in coal mining [J]. Guangzhou Chem., 2014, 39(1): 30
7 王 坤, 庞 浩, 杨元龙. 煤矿用聚氨酯水玻璃复合灌浆材料的研究 [J]. 广州化学, 2014, 39(1): 30
8 Yang Z P, Zhang X F, Liu X, et al. Flexible and stretchable polyurethane/waterglass grouting material [J]. Constr. Build. Mater., 2017, 138: 240
doi: 10.1016/j.conbuildmat.2017.01.113
9 Han X F, Feng D R, Ai Y L, et al. Preparation of two-component waterproof polyurethane coating filled with fly ash [J]. Fine Spec. Chem., 2006, 14(10): 24
9 韩雪峰, 冯冬然, 艾艳玲 等. 粉煤灰填充双组分聚氨酯防水涂料的制备 [J]. 精细与专用化学品, 2006, 14(10): 24
10 Yang S B, Hong X D, Dong W, et al. Mechanism of self-controlling temperature for self-controlling temperature polyurethane grouting reinforced materials and its application properties [J]. J. China Coal Soc., 2014, 39(7): 1315
10 杨绍斌, 洪晓东, 董 伟 等. 自限温聚氨酯注浆加固材料的自限温机理及应用性能 [J]. 煤炭学报, 2014, 39(07): 1315
11 Zhang, Q, Hu X M., Wu M Y, et al. Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials [J]. J. Appl. Polym. Sci., 2018, 135(27), 46460
doi: 10.1002/app.46460
12 Xie C P, Rong C X, Wang C B, et al. Experimental study on reinforced coal by polyurethane/water glass double liquid grouting [J]. J. Anhui Univ. Sci. Technol., (Nat. Sci.), 2020, 40(01): 51
12 谢春鹏, 荣传新, 王传兵 等. 聚氨酯/水玻璃双液注浆加固煤体试验研究 [J]. 安徽理工大学学报(自然科学版), 2020, 40(01): 51
13 Yue X M, Gu Z Y, Xiao C C, et al. Research on properties of sodium silicate modified polyurethane as binder for gangue [J]. Int. J. Min. Sci. Technol., 2021, 50(03): 515
13 岳晓明, 顾子宜, 肖翠翠 等. 水玻璃改性聚氨酯用作矸石黏结剂的性能研究 [J]. 中国矿业大学学报, 2021, 50(03): 515
14 He Z L, Li Q F, Wang J W, et al. Effect of silane treatment on the mechanical properties of polyurethane/water glass grouting materials [J]. Constr. Build. Mater., 2016, 116: 110
doi: 10.1016/j.conbuildmat.2016.04.112
15 Zhao C Y, Yan Y, Hu Z H, et al. Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites [J]. Constr. Build. Mater., 2015, 93: 309
doi: 10.1016/j.conbuildmat.2015.05.129
16 Bil M, Mrówka P, Kolbuk D, et al. Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix [J]. Compos. Sci. Technol., 2021, 201
17 Sun Y, Wang S G, Dong X S, et al. Optimized synthesis of isocyanate microcapsules for self-healing application in epoxy composites [J]. High Perform. Polym., 2020, 32: 669
doi: 10.1177/0954008319897745
18 Zhou X, Hu B, Xiao W Q, et al. Preparation and properties of composites of polyvinyl alcohol grafted graphene oxide/thermoplastic polyurethane [J]. Chin. J. Mater. Res., 2017, 31(11): 874
18 周 醒, 胡 斌, 肖文强 等. 氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(11): 874
19 He Z L, Jiang S, Li Q F, et al. Facile and cost-effective synthesis of isocyanate microcapsules via polyvinyl alcohol-mediated interfacial polymerization and their application in self-healing materials [J]. Compos. Sci. Technol., 2017, 138: 15
doi: 10.1016/j.compscitech.2016.11.004
20 Xu J. Infrared spectroscopy analys is of modified sodium silicate [J]. Foundry, 2008, 57(8): 834
20 许 进. 改性水玻璃的红外光谱分析 [J]. 铸造, 2008, 57(8): 834
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.