Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 362-370    DOI: 10.11901/1005.3093.2021.633
  研究论文 本期目录 | 过刊浏览 |
MnMg-Y-Cu合金的组织和性能的影响
张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊(), 徐翩
南昌航空大学航空制造工程学院 南昌 330063
Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy
ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei(), XU Pian
School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
Shuaijie ZHANG, Qian WU, Zhitang CHEN, Binsong ZHENG, Lei ZHANG, Pian XU. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. Chinese Journal of Materials Research, 2023, 37(5): 362-370.

全文: PDF(20814 KB)   HTML
摘要: 

研究了Mn对Mg95.5Y3Cu1.5合金的组织、拉伸性能和腐蚀行为的影响。结果表明,随着Mn含量的提高合金中的初生α-Mg相细化,其形貌由树枝晶转变为等轴枝晶状,而LPSO相的形貌和体积分数未发生明显的变化;合金的屈服强度、极限拉伸强度和伸长率都提高,与未添加Mn的合金相比Mn含量为0.9%(原子分数)的合金分别提高了20.7%、17.6%和41.0%。合金试样在1%(质量分数)NaCl溶液中的析氢速率、质量损失速率和腐蚀电流密度都降低,腐蚀电位向正向移动,表明其耐腐蚀性能提高。

关键词 金属材料Mg-Y-Cu合金组织拉伸性能腐蚀行为Mn含量    
Abstract

The effect of Mn on the solidification microstructure, tensile properties and corrosion behavior of Mg95.5Y3Cu1.5 alloy was investigated. The results show that with the increase of Mn content, the primary α-Mg phase in the alloy is gradually refined, and it also changes from dendritic to equiaxed dendritic morphology, while the morphology and volume fraction of LPSO phase do not change significantly. The addition of Mn improves the tensile properties of the alloy. When the Mn content is 0.9% (atom fraction) the yield strength, ultimate tensile strength and elongation are increased by 20.7%, 17.6% and 41.0% respectively compared with the alloy without Mn addition. In addition, the corrosion performance of the alloy is also improved. With the increase of Mn content, the volume of hydrogen evolution rate, mass loss rate and corrosion current density of the alloys gradually decrease, and the corrosion potential of the alloys, meanwhile, gradually moves towards positive direction.

Key wordsmetallic materials    Mg-Y-Cu alloy    microstructure    tensile property    corrosion behavior    Mn content
收稿日期: 2021-11-12     
ZTFLH:  TG146.2+2  
基金资助:国家自然科学基金(51401102)
作者简介: 张帅杰,男,1995年生,硕士生
AlloysMgYCuMn

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

Bal.

Bal.

Bal.

Bal.

10.36

10.12

10.06

9.87

3.69

3.72

3.51

3.42

-

0.66

1.29

1.76

表1  实验用合金的成分
图1  铸态Mg95.5-x Y3Cu1.5Mn x 合金的XRD谱
图2  Mg94.6Y3Cu1.5Mn0.9合金显微组织的BSE像和EDS面扫描图
PositionMgYCuMn

A

B

C

89.31

45.15

97.65

5.86

54.85

2.01

4.64

-

-

0.19

-

0.34

表2  图2中各微区EDS分析结果
图3  铸态Mg94.6Y3Cu1.5Mn0.9合金中LPSO相的TEM明场像、HRTEM相和选区电子衍射花样
图4  铸态Mg95.5-x Y3Cu1.5Mn x 合金显微组织的OM像
Alloy

Average grain size

/μm

Volume fraction of LPSO phase

/%

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

156±8

129±5

91±5

72±4

31.1±0.8

30.9±0.6

30.5±0.5

30.8±0.7

表3  实验合金晶粒尺寸和LPSO相体积分数的统计结果
图5  铸态Mg95.5-x Y3Cu1.5Mn x 合金显微组织的BSE像
图6  铸态Mg95.5-x Y3Cu1.5Mn x 合金的室温拉伸应力-应变曲线
Alloy

YS

/MPa

UTS

/MPa

Elongation

/%

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

169±6

181±5

185±4

204±5

239±7

255±6

268±6

281±5

3.9±0.2

4.3±0.2

4.9±0.3

5.5±0.2

表4  合金室的温拉伸性能
图7  合金的室温拉伸断口形貌
图8  铸态Mg95.5-x Y3Cu1.5Mn x 合金的析氢曲线
图9  铸态Mg95.5-x Y3Cu1.5Mn x 合金的质量损失速率
图10  合金的腐蚀表面形貌
PositionMgONaYMn

A

B

28.57

39.34

70.73

59.83

0.34

0.27

0.36

0.32

-

0.24

表5  图10中各微区EDS分析结果
图11  铸态Mg95.5-x Y3Cu1.5Mn x 合金在1%NaCl溶液中的动电位极化曲线
Alloy

Corrosion potential, φcorr

/V vs. SCE

Corrosion current density, Jcorr

/μA·cm-2

Pi

/mm·a-1

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

-1.58

-1.55

-1.54

-1.49

678.7

376.9

336.7

247.5

15.3

8.6

7.6

5.7

表6  图11中极化曲线的拟合结果
1 Zhen R, Sun Y S, Shen X W, et al. Microstructure and mechanical properties of Mg-6Gd-4Y-xZn alloy reinforced by LPSO phase [J]. Chin. J. Mater. Res., 2018, 32(6): 439
1 甄 睿, 孙扬善, 沈学为 等. LPSO相增强Mg-6Gd-4Y-xZn合金的组织与力学性能 [J]. 材料研究学报, 2018, 32(6): 439
2 Zhen R, Wu Z, Xu H Y, et al. Microstructure and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
2 甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能[J]. 材料研究学报, 2020, 34(3): 225
3 Cao G H, Zheng Z X, Liu Y X, et al. Effect of microstructure evolution on superplastic properties of fine-grained Mg-Y-Nd alloy [J]. Chin. J. Mater. Res., 2019, 33(6): 452
3 曹耿华, 郑振华, 刘一雄 等. 微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响[J]. 材料研究学报, 2019, 33(6): 452
doi: 10.11901/1005.3093.2018.506
4 Liu J W, Zou C C, Wang H, et al. Hydrogen absorption and desorption kinetics and microstructure transformation of long-period Mg94Cu4Y2 hydrogen storage alloy [J]. Chin. J. Mater. Res., 2019, 2016, 30(4):248
4 刘江文, 邹长城, 王 辉 等. 长周期结构Mg94Cu4Y2储氢合金的吸放氢动力学和组织转变 [J]. 材料研究学报, 2016, 29(8):248
5 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans. JIM, 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
6 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
7 Wang J, Zhang J S, Zong X M, et al. Effects of Ca on the formation of LPSO phase and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2015, 648: 37
8 Chuang W S, Huang J C, Lin P H, et al. Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals [J]. J. Alloy. Compd., 2019, 772: 288
doi: 10.1016/j.jallcom.2018.09.091
9 Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J], Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
10 Du X H, Duan G S, Hong M, et al. Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure [J]. Mater. Lett., 2014, 122(5): 312
doi: 10.1016/j.matlet.2014.02.056
11 Liu H, Xue F, Bai J, et al. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy [J]. Mater Sci.Eng. A, 2013, 585: 387
12 Yang K, Zhang J S, Zong X M, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2016, 669: 340
13 Kawamura Y, Kasahara T, Izumi S, et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure [J]. Scr. Mater., 2006, 55(5): 453
doi: 10.1016/j.scriptamat.2006.05.011
14 Zhang L, Huang H, Zhang S, et al. Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases [J]. Met. Mater. Int., 2021, 27: 1605
doi: 10.1007/s12540-019-00578-8
15 Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10: 3
doi: 10.1002/(ISSN)1527-2648
16 Zhang J X, Zhang J S, Han F Y, et al. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42: 130
doi: 10.1016/j.jmst.2019.09.038
17 Metalnikov P, Ben-Hamu G, Templeman Y, et al. The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys [J]. Mater. Charact., 2018, 145: 101
doi: 10.1016/j.matchar.2018.08.033
18 Cho D H, Nam J H, Lee B W, et al. Effect of Mn addition on grain refinement of biodegradable Mg-4Zn-0.5Ca alloy [J]. J. Alloy. Compd., 2016, 676: 461
doi: 10.1016/j.jallcom.2016.03.182
19 Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates [J]. Metall. Mater. Trans. A, 2013, 44(10): 4830
doi: 10.1007/s11661-013-1817-5
20 Wang C J, Jin Q L, Zhou R, et al. Effect of Mn on grain size of high-purity Mg-3Al alloys [J]. Chin. J Nonferrous Met., 2010, 20(8): 1496
20 王春建, 金青林, 周荣 等. Mn元素对高纯Mg-3Al合金晶粒尺寸的影响 [J]. 中国有色金属学报, 2010, 20(8): 1496
21 Shi Z W, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.