|
|
Mn对Mg-Y-Cu合金的组织和性能的影响 |
张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊( ), 徐翩 |
南昌航空大学航空制造工程学院 南昌 330063 |
|
Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy |
ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei( ), XU Pian |
School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China |
引用本文:
张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. Mn对Mg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
Shuaijie ZHANG,
Qian WU,
Zhitang CHEN,
Binsong ZHENG,
Lei ZHANG,
Pian XU.
Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. Chinese Journal of Materials Research, 2023, 37(5): 362-370.
1 |
Zhen R, Sun Y S, Shen X W, et al. Microstructure and mechanical properties of Mg-6Gd-4Y-xZn alloy reinforced by LPSO phase [J]. Chin. J. Mater. Res., 2018, 32(6): 439
|
1 |
甄 睿, 孙扬善, 沈学为 等. LPSO相增强Mg-6Gd-4Y-xZn合金的组织与力学性能 [J]. 材料研究学报, 2018, 32(6): 439
|
2 |
Zhen R, Wu Z, Xu H Y, et al. Microstructure and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
|
2 |
甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能[J]. 材料研究学报, 2020, 34(3): 225
|
3 |
Cao G H, Zheng Z X, Liu Y X, et al. Effect of microstructure evolution on superplastic properties of fine-grained Mg-Y-Nd alloy [J]. Chin. J. Mater. Res., 2019, 33(6): 452
|
3 |
曹耿华, 郑振华, 刘一雄 等. 微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响[J]. 材料研究学报, 2019, 33(6): 452
doi: 10.11901/1005.3093.2018.506
|
4 |
Liu J W, Zou C C, Wang H, et al. Hydrogen absorption and desorption kinetics and microstructure transformation of long-period Mg94Cu4Y2 hydrogen storage alloy [J]. Chin. J. Mater. Res., 2019, 2016, 30(4):248
|
4 |
刘江文, 邹长城, 王 辉 等. 长周期结构Mg94Cu4Y2储氢合金的吸放氢动力学和组织转变 [J]. 材料研究学报, 2016, 29(8):248
|
5 |
Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans. JIM, 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
|
6 |
Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
|
7 |
Wang J, Zhang J S, Zong X M, et al. Effects of Ca on the formation of LPSO phase and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2015, 648: 37
|
8 |
Chuang W S, Huang J C, Lin P H, et al. Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals [J]. J. Alloy. Compd., 2019, 772: 288
doi: 10.1016/j.jallcom.2018.09.091
|
9 |
Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J], Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
|
10 |
Du X H, Duan G S, Hong M, et al. Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure [J]. Mater. Lett., 2014, 122(5): 312
doi: 10.1016/j.matlet.2014.02.056
|
11 |
Liu H, Xue F, Bai J, et al. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy [J]. Mater Sci.Eng. A, 2013, 585: 387
|
12 |
Yang K, Zhang J S, Zong X M, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2016, 669: 340
|
13 |
Kawamura Y, Kasahara T, Izumi S, et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure [J]. Scr. Mater., 2006, 55(5): 453
doi: 10.1016/j.scriptamat.2006.05.011
|
14 |
Zhang L, Huang H, Zhang S, et al. Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases [J]. Met. Mater. Int., 2021, 27: 1605
doi: 10.1007/s12540-019-00578-8
|
15 |
Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10: 3
doi: 10.1002/(ISSN)1527-2648
|
16 |
Zhang J X, Zhang J S, Han F Y, et al. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42: 130
doi: 10.1016/j.jmst.2019.09.038
|
17 |
Metalnikov P, Ben-Hamu G, Templeman Y, et al. The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys [J]. Mater. Charact., 2018, 145: 101
doi: 10.1016/j.matchar.2018.08.033
|
18 |
Cho D H, Nam J H, Lee B W, et al. Effect of Mn addition on grain refinement of biodegradable Mg-4Zn-0.5Ca alloy [J]. J. Alloy. Compd., 2016, 676: 461
doi: 10.1016/j.jallcom.2016.03.182
|
19 |
Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates [J]. Metall. Mater. Trans. A, 2013, 44(10): 4830
doi: 10.1007/s11661-013-1817-5
|
20 |
Wang C J, Jin Q L, Zhou R, et al. Effect of Mn on grain size of high-purity Mg-3Al alloys [J]. Chin. J Nonferrous Met., 2010, 20(8): 1496
|
20 |
王春建, 金青林, 周荣 等. Mn元素对高纯Mg-3Al合金晶粒尺寸的影响 [J]. 中国有色金属学报, 2010, 20(8): 1496
|
21 |
Shi Z W, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|