|
|
深冷处理时间对M2高速钢红硬性的影响 |
段元满1, 朱丽慧1( ), 吴晓春1, 顾炳福2 |
1.上海大学材料科学与工程学院 上海 200444 2.江苏省福达特种钢有限公司 扬中 212200 |
|
Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel |
DUAN Yuanman1, ZHU Lihui1( ), WU Xiaochun1, GU Bingfu2 |
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2.Jiangsu Fuda Special Steel Co, Ltd, Yangzhong 212200, China |
引用本文:
段元满, 朱丽慧, 吴晓春, 顾炳福. 深冷处理时间对M2高速钢红硬性的影响[J]. 材料研究学报, 2021, 35(1): 17-24.
Yuanman DUAN,
Lihui ZHU,
Xiaochun WU,
Bingfu GU.
Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. Chinese Journal of Materials Research, 2021, 35(1): 17-24.
1 |
Zhou X F, Zheng Z X, Zhang W C, et al. Deformation-induced carbide transformation in M2 high-speed steel [J]. Metall. Mater. Trans., 2020, 51(2): 568
|
2 |
Amir H, Cyrus Z, Frank J C. Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel [J]. Ceram. Int., 2019, 45(7): 8616
|
3 |
Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill [J]. J. Mater. Process. Technol., 2007, 206(1): 467
|
4 |
Chopra S A, Sargade V G. Metallurgy behind the cryogenic treatment of cutting tools: an overview [J]. Mater. Today: Proc., 2015, 2(4): 1814
|
5 |
Candane D, Alagumurthi N, Palaniradja K. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS [J]. Int. J. Mate. Sci. Appl., 2013, 2(2): 56
|
6 |
Das D, Dutta A K, Ray K K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel [J]. Cryogenics, 2009, 49(5): 176
|
7 |
Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels [J]. J. Mater. Process. Technol., 2001, 118(1-3): 350
|
8 |
Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon distribution of high carbon and high alloy tool steel SDC99 during tempering [J]. Chin. J. Mater. Res., 2016, 30(11): 801
|
8 |
谢尘, 周龙梅, 闵娜等. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801
|
9 |
Huang J Y, Zhu Y T, Liao X Z, et al. Microstructure of cryogenic treated M2 tool steel [J]. Mater. Sci. Eng. A, 2003, 339(1): 241
|
10 |
Gill S S, Singh J, Singh R, et al. Effect of cryogenic treatment on AISI M2 high speed steel: metallurgical and mechanical characterization [J]. J. Mater. Eng. Perform., 2011, 21(7): 1
|
11 |
Ai Z R, Wu H Y, Yu K, et al. Effect of deep cryogenic treatment on properties of W6Mo5Cr4V2 high speed steel [J]. Special Steel, 2019, 40(06): 60
|
11 |
艾峥嵘, 吴红艳, 于凯等. 深冷处理对W6Mo5Cr4V2高速钢性能的影响 [J]. 特殊钢, 2019, 40(06): 60
|
12 |
Lv Y W, Yan X G, Han X J, et al. Effect of deep cryogenic treatment on red hardness of W6Mo5Cr4V2 high speed steel [J]. Heat Treat. Met., 2015, 40(10): 91
|
12 |
吕雁文, 闫献国, 韩晓君等. 深冷处理对W6Mo5Cr4V2高速钢红硬性的影响 [J]. 金属热处理, 2015, 40(10): 91
|
13 |
Li S Y, Liu T Z, Li G. Study on transformation of retained austenite under cryogenic condition [J]. Mater. Rep., 2003, (08): 80
|
13 |
李士燕, 刘天佐, 李钢. 在深冷条件下残余奥氏体转变的研究 [J]. 材料导报, 2003, (08): 80
|
14 |
Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel [J]. Wear, 2013, 302(1-2): 854
|
15 |
Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite [J]. Metall. Mater. Trans. A, 1976, 7(7): 999
|
16 |
Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP-assisted steel [J]. Steel Res. Int., 2013, 84(3): 297
|
17 |
Zhou J, Jing L, Xu S, et al. Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laserpeening [J]. Surf. Coat. Technol., 2018, 345:31
|
18 |
Podgornik B, Paulin I, Zajec B, et al. Deep cryogenic treatment of tool steels [J]. J. Mater. Process. Technol., 2016, 229:398
|
19 |
Tyshchenko A I, Theisen W, Oppenkowski A, et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel [J]. Mater. Sci. Eng. A, 2010, 527(26): 7027
|
20 |
Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical properties and microstructure of low carbon high alloy martensitic bearing steel [J]. Chin. J. Mater. Res., 2019, 33(08): 561
|
20 |
李东辉, 李志敏, 肖茂果等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(08): 561
|
21 |
Deng Y K, Chen J R, Wang S Z. High Speed Tool Steel [M]. Beijing: The Press of Metallurgical Industry, 2002
|
21 |
邓玉昆, 陈景榕, 王世章. 高速工具钢 [M]. 北京: 冶金工业出版社, 2002
|
22 |
Bhadeshia H K D H, Edmonds D V. Tempered martensite embrittlement: Role of retained austenite and cementite [J]. Met. Sci., 1979, 13(6): 325
|
23 |
Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite atroom temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scripta Mater., 2001, 45(7): 767
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|