Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 17-24    DOI: 10.11901/1005.3093.2020.176
  研究论文 本期目录 | 过刊浏览 |
深冷处理时间对M2高速钢红硬性的影响
段元满1, 朱丽慧1(), 吴晓春1, 顾炳福2
1.上海大学材料科学与工程学院 上海 200444
2.江苏省福达特种钢有限公司 扬中 212200
Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel
DUAN Yuanman1, ZHU Lihui1(), WU Xiaochun1, GU Bingfu2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Jiangsu Fuda Special Steel Co, Ltd, Yangzhong 212200, China
引用本文:

段元满, 朱丽慧, 吴晓春, 顾炳福. 深冷处理时间对M2高速钢红硬性的影响[J]. 材料研究学报, 2021, 35(1): 17-24.
Yuanman DUAN, Lihui ZHU, Xiaochun WU, Bingfu GU. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. Chinese Journal of Materials Research, 2021, 35(1): 17-24.

全文: PDF(14919 KB)   HTML
摘要: 

使用洛氏硬度计、X射线衍射仪、扫描电子显微镜和透射电子显微镜等手段研究了深冷处理时间对M2高速钢的硬度和红硬性的影响及其机理。结果表明:深冷处理提高了M2钢的室温硬度和红硬性,深冷12 h使650℃红硬性的改善最显著。随着深冷时间的延长残余奥氏体含量不断降低,其形貌由长条形块状转变为薄膜状分布在马氏体板条间;马氏体轴比和碳含量逐渐降低,孪晶马氏体细化;初生碳化物偏聚减少,析出的二次碳化物数量逐渐增多。二次碳化物数量的增多不仅使析出强化作用增强,还能抑制高温下马氏体的分解。同时,残余奥氏体向马氏体的进一步转变以及孪晶马氏体的细化,对室温硬度的提高和红硬性的改善也有一定的作用。

关键词 金属材料M2高速钢深冷处理红硬性显微组织碳化物    
Abstract

The effect of deep cryogenic treatment time on the room temperature hardness and red hardness of M2 high speed steel was investigated by means of Rockwell hardness tester, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that the room-temperature hardness and red hardness of M2 steel were improved by deep cryogenic treatment, and the red hardness at 650℃ was improved most significantly after deep cryogenic treatment for 12 hours. With the increasing deep cryogenic time, the amount of retained austenite decreased, the shape of retained austenite between martensitic laths changed from strip-like to film-like, the axial ratio and carbon content of martensite decreased gradually, and twin martensite was thinned; the segregation of primary carbides alleviated, and the amount of secondary carbides increased. The increase in the amount of secondary carbides can enhance the precipitation strengthening, and inhibit the decomposition of martensite at high temperatures. In addition, the further transformation of retained austenite to martensite and the thinning of twin martensite also favor the enhancement of room-temperature hardness and red hardness.

Key wordsmetallic materials    M2 high speed steel    deep cryogenic treatment    red hardness    microstructure    carbide
收稿日期: 2020-05-20     
ZTFLH:  TG430.40  
基金资助:国家重点研发计划(2016YFB0300403);2017年镇江“金山英才”计划,2018年“江苏省高层次创新创业人才引进计划资助”
作者简介: 段元满,男,1994年生,硕士生
CSiMnPSCrMoWVFe
0.8500.2280.2800.0670.0204.3405.3706.3802.100Bal.
表1  M2高速钢的化学成分 (%,质量分数)
图1  深冷不同时间M2高速钢的硬度和红硬性
图2  深冷不同时间后M2高速钢的SEM照片
Cryogenic timeTotal Ncarbide/mm-2Classification of carbides on the basis of size (Ncarbide)/mm-2
0~0.5 μm0.5~1 μm1~1.5 μm1.5~2 μm
0 h4132061178010
1 h1201944223331
4 h19511694225311
8 h25172169324240
12 h27092356329231
表2  深冷不同时间的M2高速钢中碳化物的尺寸分布
图3  深冷处理不同时间M2高速钢的TEM形貌
图4  深冷不同时间M2高速钢的XRD图谱
Cryogenic time/h014812
Austenite amount/%21.313.28.97.55.6
表3  不同深冷时间下M2高速钢中的残余奥氏体含量
图5  M2高速钢深冷1 h后的残余奥氏体的明场像、暗场像和电子衍射花样
图6  M2高速钢深冷12 h后残余奥氏体的明场像、暗场像和电子衍射花样
图7  深冷不同时间的M2高速钢M(211)峰的高斯拟合图
Cryogenic time/h014812
Martensitic axial ratio1.0321.0281.0251.0241.022
Carbon content /%0.970.920.850.810.77
表4  不同深冷时间下M2高速钢中的马氏体轴比和含碳量
图8  深冷时间对M2高速钢中碳化物含量的影响和碳化物的XRD图谱
图9  深冷12 h后M2高速钢中二次碳化物形貌和EDS能谱
1 Zhou X F, Zheng Z X, Zhang W C, et al. Deformation-induced carbide transformation in M2 high-speed steel [J]. Metall. Mater. Trans., 2020, 51(2): 568
2 Amir H, Cyrus Z, Frank J C. Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel [J]. Ceram. Int., 2019, 45(7): 8616
3 Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill [J]. J. Mater. Process. Technol., 2007, 206(1): 467
4 Chopra S A, Sargade V G. Metallurgy behind the cryogenic treatment of cutting tools: an overview [J]. Mater. Today: Proc., 2015, 2(4): 1814
5 Candane D, Alagumurthi N, Palaniradja K. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS [J]. Int. J. Mate. Sci. Appl., 2013, 2(2): 56
6 Das D, Dutta A K, Ray K K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel [J]. Cryogenics, 2009, 49(5): 176
7 Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels [J]. J. Mater. Process. Technol., 2001, 118(1-3): 350
8 Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon distribution of high carbon and high alloy tool steel SDC99 during tempering [J]. Chin. J. Mater. Res., 2016, 30(11): 801
8 谢尘, 周龙梅, 闵娜等. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801
9 Huang J Y, Zhu Y T, Liao X Z, et al. Microstructure of cryogenic treated M2 tool steel [J]. Mater. Sci. Eng. A, 2003, 339(1): 241
10 Gill S S, Singh J, Singh R, et al. Effect of cryogenic treatment on AISI M2 high speed steel: metallurgical and mechanical characterization [J]. J. Mater. Eng. Perform., 2011, 21(7): 1
11 Ai Z R, Wu H Y, Yu K, et al. Effect of deep cryogenic treatment on properties of W6Mo5Cr4V2 high speed steel [J]. Special Steel, 2019, 40(06): 60
11 艾峥嵘, 吴红艳, 于凯等. 深冷处理对W6Mo5Cr4V2高速钢性能的影响 [J]. 特殊钢, 2019, 40(06): 60
12 Lv Y W, Yan X G, Han X J, et al. Effect of deep cryogenic treatment on red hardness of W6Mo5Cr4V2 high speed steel [J]. Heat Treat. Met., 2015, 40(10): 91
12 吕雁文, 闫献国, 韩晓君等. 深冷处理对W6Mo5Cr4V2高速钢红硬性的影响 [J]. 金属热处理, 2015, 40(10): 91
13 Li S Y, Liu T Z, Li G. Study on transformation of retained austenite under cryogenic condition [J]. Mater. Rep., 2003, (08): 80
13 李士燕, 刘天佐, 李钢. 在深冷条件下残余奥氏体转变的研究 [J]. 材料导报, 2003, (08): 80
14 Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel [J]. Wear, 2013, 302(1-2): 854
15 Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite [J]. Metall. Mater. Trans. A, 1976, 7(7): 999
16 Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP-assisted steel [J]. Steel Res. Int., 2013, 84(3): 297
17 Zhou J, Jing L, Xu S, et al. Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laserpeening [J]. Surf. Coat. Technol., 2018, 345:31
18 Podgornik B, Paulin I, Zajec B, et al. Deep cryogenic treatment of tool steels [J]. J. Mater. Process. Technol., 2016, 229:398
19 Tyshchenko A I, Theisen W, Oppenkowski A, et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel [J]. Mater. Sci. Eng. A, 2010, 527(26): 7027
20 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical properties and microstructure of low carbon high alloy martensitic bearing steel [J]. Chin. J. Mater. Res., 2019, 33(08): 561
20 李东辉, 李志敏, 肖茂果等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(08): 561
21 Deng Y K, Chen J R, Wang S Z. High Speed Tool Steel [M]. Beijing: The Press of Metallurgical Industry, 2002
21 邓玉昆, 陈景榕, 王世章. 高速工具钢 [M]. 北京: 冶金工业出版社, 2002
22 Bhadeshia H K D H, Edmonds D V. Tempered martensite embrittlement: Role of retained austenite and cementite [J]. Met. Sci., 1979, 13(6): 325
23 Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite atroom temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scripta Mater., 2001, 45(7): 767
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.