Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 569-574    DOI: 10.11901/1005.3093.2020.019
  研究论文 本期目录 | 过刊浏览 |
直链淀粉-鹅去氧胆酸接枝聚合物的合成及其自组装行为
熊校勤(), 张洪权, 方婵雨
湖北第二师范学院化学与生命科学学院 植物抗癌活性物质提纯与应用湖北省重点实验室 武汉 430205
Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates
XIONG Xiaoqin(), ZHANG Hongquan, FANG Chanyu
Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
引用本文:

熊校勤, 张洪权, 方婵雨. 直链淀粉-鹅去氧胆酸接枝聚合物的合成及其自组装行为[J]. 材料研究学报, 2020, 34(8): 569-574.
Xiaoqin XIONG, Hongquan ZHANG, Chanyu FANG. Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates[J]. Chinese Journal of Materials Research, 2020, 34(8): 569-574.

全文: PDF(3798 KB)   HTML
摘要: 

使用1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)/N-羟基琥珀酰亚胺(NHS)交联剂合成一种直链淀粉接枝鹅去氧胆酸聚合物(Amylose–chenodeoxycholic acid conjugates, AMY-CDCA),并用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H NMR)和紫外光谱法对其进行了表征。结果表明,CDCA已经成功地接枝到直链淀粉骨架上,接枝度为138.15/100个葡萄糖单元。可用透析法将AMY-CDCA聚合物制备成球形并具有核壳结构的胶束,其平均粒径为224 nm,多分散指数为0.110。使用疏水性荧光探针芘和尼罗红研究了胶束的组装行为。结果表明,聚合物的临界胶束浓度(CMC)为2.8×10-3 mg/mL,其疏水核心对尼罗红有增溶作用。

关键词 有机高分子材料直链淀粉鹅去氧胆酸胶束自组装    
Abstract

Amylose-chenodeoxycholic acid conjugates (AMY-CDCA) were prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbonized diimine (EDC) /N-hydroxysuccinimide (NHS) cross-linking agents. The AMY-CDCA polymer was characterized by FTIR, 1H NMR and ultraviolet spectroscopy. It was shown that CDCA was successfully coupled to the amylose backbone with a molar substitution of 138.15 per 100 glucose units. Self-Assembled micelles were prepared from the AMY-CDCA polymer through dialysis method. The average particle size of the micelles measured by dynamic light scattering method is 224 nm, and the polydispersity index is 0.110. TEM images demonstrated that the micelles are of spherical shape with a core-shell structure. The critical micelle concentration is 2.8×10-3 mg/mL, which was determined using a probe fluorescence technique in the presence of pyrene. Additionally, Nile Red can be encapsulated and stabilized in the hydrophobic core of the micelles.

Key wordsorganic polymer materials    amylose    chenodeoxycholic acid    micelle    self assembly
收稿日期: 2020-01-15     
ZTFLH:  O631  
基金资助:湖北省自然科学基金(2016CFB310)
作者简介: 熊校勤,男,1984年生,博士
图1  AMY-CDCA的合成路线
图2  Amylose、CDCA和AMY-CDCA的红外光谱图
图3  Amylose和AMY-CDCA的1H NMR图谱
图4  CDCA的紫外吸收标准曲线
图5  AMY-CDCA聚合物胶束的的粒径分布
图6  AMY-CDCA聚合物胶束的透射电子显微镜照片
图7  不同浓度的AMY-CDCA胶束溶液对芘的激发光谱中I333/I338 的影响
图8  不同浓度的AMY-CDCA胶束溶液中尼罗红的荧光发射光谱
[1] Liu R. Water-Insoluble Drug Formulation [M]. 2nd ed. Boca Raton, FL: CRC Press, 2008: 669
[2] Torchilin V P. Nanoparticulates as Drug Carriers [M]. London: Imperial College Press, 2006: 724
[3] Biswas S, Kumari P, Lakhani P M, et al. Recent advances in polymeric micelles for anti-cancer drug delivery [J]. Eur. J. Pharm. Sci., 2016, 83: 184
doi: 10.1016/j.ejps.2015.12.031 pmid: 26747018
[4] Zhang N, Wardwell P R, Bader R A. Polysaccharide-based micelles for drug delivery [J]. Pharmaceutics, 2013, 5: 329
doi: 10.3390/pharmaceutics5020329
[5] Saravanakumar G, Jo D G, Park J H. Polysaccharide-based nano-particles: a versatile platform for drug delivery and biomedical imaging [J]. Curr. Med. Chem., 2012, 19: 3212
doi: 10.2174/092986712800784658 pmid: 22612705
[6] Huh M S, Lee E J, Koo H, et al. Polysaccharide-based nanoparticles for gene delivery [J]. Top. Curr. Chem (Cham), 2017, 375: 31
[7] Barclay T G, Day C M, Petrovsky N, et al. Review of polysaccharide particle-based functional drug delivery [J]. Carbohydr. Polym., 2019, 221: 94
pmid: 31227171
[8] Chen L L, Ji F L, Bao Y M, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy [J]. Mater. Sci. Eng., 2017, 70C: 418
[9] Sarika P R, James N R, Nishna N, et al. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells [J]. Colloid Surf., 2015, 133B: 347
[10] Chen L L, Wang X H, Wang J Y. Novel bifunctional pullulan-based micelles with good hemcompatibility for efficient co-delivery of cancer suppressor (Gene P53) and doxorubicin in cancer cells [J]. Nanomed. Nanotechnol. Biol. Med., 2016, 12: 530
[11] Wang HA, Li ZY, Lu ST, et al. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect [J]. Mater. Today Commun., 2020, 22: 100764
[12] Lu A J, Petit E, Li S M, et al. Novel thermo-responsive micelles prepared from amphiphilic hydroxypropyl methyl cellulose-block-JEFFAMINE copolymers [J]. Inter. J. Biol. Macromol., 2019, 135: 38
[13] Song Y B, Zhang L Z, Gan W P, et al. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery [J]. Colloid Surf., 2011, 83B: 313
[14] Jin R, Guo X L, Dong L L, et al. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy [J]. Colloid Surf., 2017, 158B: 47
[15] Yao X M, Chen L, Chen X F, et al. Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery [J]. Colloid Surf., 2014, 121B: 36
[16] Lin B B, Su H Y, Jin R R, et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes [J]. Sci. Bull., 2015, 60: 1272
doi: 10.1007/s11434-015-0840-x
[17] Wu M M, Guo K, Dong H W, et al. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate [J]. Mater. Sci. Eng., 2014, 45C: 162
[18] Mu Y Z, Fu Y M, Li J, et al. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug [J]. Carbohy. Polym., 2019, 203: 10
doi: 10.1016/j.carbpol.2018.09.020
[19] Nam J P, Lee K J, Choi J W, et al. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation [J]. Colloid Surf., 2015, 133B: 254
[20] Lee J S, Go D H, Bae J W, et al. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor [J]. J. Control Release, 2007, 117: 204
doi: 10.1016/j.jconrel.2006.11.004 pmid: 17196698
[21] Zhang F R, Fei J, Sun M J, et al. Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles [J]. Inter J. Pharm., 2016, 511: 390
[22] Saadat E, Shakor N, Gholami M, et al. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation [J]. Inter J. Pharm., 2015, 489: 218
[23] Zhong Y N, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo [J]. Biomaterials, 2016, 84: 250
doi: 10.1016/j.biomaterials.2016.01.049 pmid: 26851390
[24] Shen Y, Li Q, Tu J S, et al. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery [J]. Carbohyd. Polym., 2009, 77: 95
doi: 10.1016/j.carbpol.2008.12.010
[25] Morimoto N, Hirano S, Takahashi H, et al. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle [J]. Biomacromolecules, 2013, 14: 56
doi: 10.1021/bm301286h
[26] Wang X H, Tian Q, Wang W, et al. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin [J]. J. Mater. Sci. Mater. Med., 2012, 23: 1663
doi: 10.1007/s10856-012-4627-1 pmid: 22538726
[27] Li J, Huo M R, Wang J, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel [J]. Biomaterials, 2012, 33: 2310
pmid: 22166223
[28] Hu F Q, Chen W W, Zhao M D, et al. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles [J]. Gene Ther., 2013, 20: 597
doi: 10.1038/gt.2012.72
[29] Duan K R, Zhang X L, Tang X X, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin [J]. Colloid Surf., 2010, 76B: 475
[30] Xie F W, Pollet E, Halley P J, et al. Starch-based nano-biocomposites [J]. Prog. Polym. Sci., 2013, 38: 1590
[31] Jiang C J, Wang H X, Zhang X M, et al. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy [J]. Int. J. Pharm., 2014, 475: 60
doi: 10.1016/j.ijpharm.2014.08.037 pmid: 25152167
[32] Yang J H, Gao C M, Lv S Y, et al. Physicochemical characterization of amphiphilic nanoparticles based on the novel starch-deoxycholic acid conjugates and self-aggregates [J]. Carbohydr. Polym., 2014, 102: 838
doi: 10.1016/j.carbpol.2013.10.081 pmid: 24507354
[33] Subramaniam A B, Gregory D, Petkov J, et al. The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes [J]. Phys. Chem. Chem. Phys., 2007, 9: 6476
pmid: 18060179
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 李壮, 须秋洁, 刘国金, 张耘箫, 周岚, 邵建中. 基于胶体微球自组装光子晶体的结构生色[J]. 材料研究学报, 2021, 35(3): 175-183.
[14] 刘洁翔, 刘蕊, 张晓光. 表面活性剂辅助农药在锂皂石中的插层及其性能[J]. 材料研究学报, 2021, 35(2): 81-92.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.