|
|
直链淀粉-鹅去氧胆酸接枝聚合物的合成及其自组装行为 |
熊校勤( ), 张洪权, 方婵雨 |
湖北第二师范学院化学与生命科学学院 植物抗癌活性物质提纯与应用湖北省重点实验室 武汉 430205 |
|
Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates |
XIONG Xiaoqin( ), ZHANG Hongquan, FANG Chanyu |
Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China |
引用本文:
熊校勤, 张洪权, 方婵雨. 直链淀粉-鹅去氧胆酸接枝聚合物的合成及其自组装行为[J]. 材料研究学报, 2020, 34(8): 569-574.
Xiaoqin XIONG,
Hongquan ZHANG,
Chanyu FANG.
Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates[J]. Chinese Journal of Materials Research, 2020, 34(8): 569-574.
[1] |
Liu R. Water-Insoluble Drug Formulation [M]. 2nd ed. Boca Raton, FL: CRC Press, 2008: 669
|
[2] |
Torchilin V P. Nanoparticulates as Drug Carriers [M]. London: Imperial College Press, 2006: 724
|
[3] |
Biswas S, Kumari P, Lakhani P M, et al. Recent advances in polymeric micelles for anti-cancer drug delivery [J]. Eur. J. Pharm. Sci., 2016, 83: 184
doi: 10.1016/j.ejps.2015.12.031
pmid: 26747018
|
[4] |
Zhang N, Wardwell P R, Bader R A. Polysaccharide-based micelles for drug delivery [J]. Pharmaceutics, 2013, 5: 329
doi: 10.3390/pharmaceutics5020329
|
[5] |
Saravanakumar G, Jo D G, Park J H. Polysaccharide-based nano-particles: a versatile platform for drug delivery and biomedical imaging [J]. Curr. Med. Chem., 2012, 19: 3212
doi: 10.2174/092986712800784658
pmid: 22612705
|
[6] |
Huh M S, Lee E J, Koo H, et al. Polysaccharide-based nanoparticles for gene delivery [J]. Top. Curr. Chem (Cham), 2017, 375: 31
|
[7] |
Barclay T G, Day C M, Petrovsky N, et al. Review of polysaccharide particle-based functional drug delivery [J]. Carbohydr. Polym., 2019, 221: 94
pmid: 31227171
|
[8] |
Chen L L, Ji F L, Bao Y M, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy [J]. Mater. Sci. Eng., 2017, 70C: 418
|
[9] |
Sarika P R, James N R, Nishna N, et al. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells [J]. Colloid Surf., 2015, 133B: 347
|
[10] |
Chen L L, Wang X H, Wang J Y. Novel bifunctional pullulan-based micelles with good hemcompatibility for efficient co-delivery of cancer suppressor (Gene P53) and doxorubicin in cancer cells [J]. Nanomed. Nanotechnol. Biol. Med., 2016, 12: 530
|
[11] |
Wang HA, Li ZY, Lu ST, et al. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect [J]. Mater. Today Commun., 2020, 22: 100764
|
[12] |
Lu A J, Petit E, Li S M, et al. Novel thermo-responsive micelles prepared from amphiphilic hydroxypropyl methyl cellulose-block-JEFFAMINE copolymers [J]. Inter. J. Biol. Macromol., 2019, 135: 38
|
[13] |
Song Y B, Zhang L Z, Gan W P, et al. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery [J]. Colloid Surf., 2011, 83B: 313
|
[14] |
Jin R, Guo X L, Dong L L, et al. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy [J]. Colloid Surf., 2017, 158B: 47
|
[15] |
Yao X M, Chen L, Chen X F, et al. Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery [J]. Colloid Surf., 2014, 121B: 36
|
[16] |
Lin B B, Su H Y, Jin R R, et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes [J]. Sci. Bull., 2015, 60: 1272
doi: 10.1007/s11434-015-0840-x
|
[17] |
Wu M M, Guo K, Dong H W, et al. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate [J]. Mater. Sci. Eng., 2014, 45C: 162
|
[18] |
Mu Y Z, Fu Y M, Li J, et al. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug [J]. Carbohy. Polym., 2019, 203: 10
doi: 10.1016/j.carbpol.2018.09.020
|
[19] |
Nam J P, Lee K J, Choi J W, et al. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation [J]. Colloid Surf., 2015, 133B: 254
|
[20] |
Lee J S, Go D H, Bae J W, et al. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor [J]. J. Control Release, 2007, 117: 204
doi: 10.1016/j.jconrel.2006.11.004
pmid: 17196698
|
[21] |
Zhang F R, Fei J, Sun M J, et al. Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles [J]. Inter J. Pharm., 2016, 511: 390
|
[22] |
Saadat E, Shakor N, Gholami M, et al. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation [J]. Inter J. Pharm., 2015, 489: 218
|
[23] |
Zhong Y N, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo [J]. Biomaterials, 2016, 84: 250
doi: 10.1016/j.biomaterials.2016.01.049
pmid: 26851390
|
[24] |
Shen Y, Li Q, Tu J S, et al. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery [J]. Carbohyd. Polym., 2009, 77: 95
doi: 10.1016/j.carbpol.2008.12.010
|
[25] |
Morimoto N, Hirano S, Takahashi H, et al. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle [J]. Biomacromolecules, 2013, 14: 56
doi: 10.1021/bm301286h
|
[26] |
Wang X H, Tian Q, Wang W, et al. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin [J]. J. Mater. Sci. Mater. Med., 2012, 23: 1663
doi: 10.1007/s10856-012-4627-1
pmid: 22538726
|
[27] |
Li J, Huo M R, Wang J, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel [J]. Biomaterials, 2012, 33: 2310
pmid: 22166223
|
[28] |
Hu F Q, Chen W W, Zhao M D, et al. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles [J]. Gene Ther., 2013, 20: 597
doi: 10.1038/gt.2012.72
|
[29] |
Duan K R, Zhang X L, Tang X X, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin [J]. Colloid Surf., 2010, 76B: 475
|
[30] |
Xie F W, Pollet E, Halley P J, et al. Starch-based nano-biocomposites [J]. Prog. Polym. Sci., 2013, 38: 1590
|
[31] |
Jiang C J, Wang H X, Zhang X M, et al. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy [J]. Int. J. Pharm., 2014, 475: 60
doi: 10.1016/j.ijpharm.2014.08.037
pmid: 25152167
|
[32] |
Yang J H, Gao C M, Lv S Y, et al. Physicochemical characterization of amphiphilic nanoparticles based on the novel starch-deoxycholic acid conjugates and self-aggregates [J]. Carbohydr. Polym., 2014, 102: 838
doi: 10.1016/j.carbpol.2013.10.081
pmid: 24507354
|
[33] |
Subramaniam A B, Gregory D, Petkov J, et al. The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes [J]. Phys. Chem. Chem. Phys., 2007, 9: 6476
pmid: 18060179
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|