Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 561-568    DOI: 10.11901/1005.3093.2020.021
  研究论文 本期目录 | 过刊浏览 |
溅射沉积掺AgSnSe薄膜的微结构和热电性能
李贵鹏1, 宋贵宏1(), 胡方1, 杜昊2, 尹荔松3
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所材料表面工程研究部 沈阳 110015
3 五邑大学 智能制造学部 江门 520920
Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering
LI Guipeng1, SONG Guihong1(), HU Fang1, DU Hao2, YIN Lisong3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
3 Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 520920, China
引用本文:

李贵鹏, 宋贵宏, 胡方, 杜昊, 尹荔松. 溅射沉积掺AgSnSe薄膜的微结构和热电性能[J]. 材料研究学报, 2020, 34(8): 561-568.
Guipeng LI, Guihong SONG, Fang HU, Hao DU, Lisong YIN. Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2020, 34(8): 561-568.

全文: PDF(3533 KB)   HTML
摘要: 

使用粉末烧结SnSe合金靶高真空磁控溅射制备掺杂Ag的SnSe热电薄膜,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)等手段分析薄膜的相组成、表面形貌、截面形貌、微区元素含量和元素分布,利用塞贝克系数/电阻分析系统LSR-3测量沉积薄膜的电阻率和Seebeck系数,研究了不同Ag含量SnSe薄膜的热电性能。结果表明,采用溅射技术可制备出正交晶系Pnma结构的SnSe相薄膜,掺杂的Ag在薄膜中生成了纳米Ag3Sn。与未掺杂Ag相比,掺杂Ag的SnSe薄膜其电阻率和Seebeck系数(绝对值,下同)明显减小。并且在一定掺杂范围内,掺杂Ag越多的薄膜电阻率和Seebeck系数越小。未掺杂Ag的SnSe薄膜样品,其Seebeck系数较大但是电阻率也大,因此功率因子较小。Ag掺杂量(原子分数)为7.97%的样品,因其Seebeck系数绝对值较大而电阻率适当,280℃时的功率因子最大(约为0.93 mW·m-1·K-2),比未掺杂Ag的样品(PF=0.61 mW·m-1·K-2)高52%。掺杂适量的Ag能提高溅射沉积的SnSe薄膜的热电性能(功率因子)。

关键词 材料表面与界面热电材料SnSe薄膜掺杂AgSeebeck系数电阻率Ag3Sn相    
Abstract

Ag-doped SnSe thermoelectric thin films were deposited by high vacuum magnetron sputtering using a powder sintered SnSe alloy target. The influence of Ag-doping on the surface and cross sectional morphology, phase composition and thermoelectric properties of the SnSe thin films were investigated by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), as well as Seebeck coefficient/resistance analysis system LSR-3. The results show that the SnSe films are composed of SnSe phase of orthorhombic Pnma structure. The nano-sized Ag3Sn phase exists in the films with Ag-doping. Compared with the film without Ag-doping, the resistivity and absolute value of Seebeck coefficient of the SnSe films with Ag-doping decrease significantly. In a certain doping range, the more Ag-doping is, the smaller the resistivity and the absolute value of the Seebeck coefficient are. Although the absolute value of the Seebeck coefficient of undoped films is high and the resistivity is relatively large, so the power factor is small. For the film with 7.97% Ag (in atomic fraction), the power factor reaches the maximum at 280℃ due to higher Seebeck coefficient absolute value and appropriate resistivity, accordingly, the maximum power factor is about 0.93 mW·m-1·K-2 at 280℃, which is 40% higher than that of undoped films (PF=0.61 mW·m-1·K-2). In conclusion, the appropriate amount of Ag-doping can effectively improve the thermoelectric properties (power factor) of the SnSe thin films by magnetron sputtering.

Key wordssurface and interface in the materials    thermoelectric materials    SnSe films    Ag doping    Seebeck coefficient    resistivity    Ag3Sn phase
收稿日期: 2020-01-16     
ZTFLH:  O613.52  
基金资助:国家自然科学基金(51772193);广东省重点领域研发计划(2106B01013003)
作者简介: 李贵鹏,男,1992年生,博士生
The same size of Ag particles

Ag/%,

atomic fraction

Sn/%,

atomic fraction

Se/%,

atomic fraction

Ag/(Sn+Se)Sn/Se
0056.4643.5401.297
24.4254.8240.760.0351.345
47.9753.1238.910.0871.365
612.4650.6736.870.1421.374
815.5549.6334.820.1841.425
表1  不同Ag掺杂量SnSe薄膜的成分
图1  不同Ag含量(原子分数)SnSe薄膜的XRD谱、局部XRD谱和掺4.42%Ag样品的元素分布图
Sample(atomic fraction)FWHM/(°)β/(rad)2θ/(°)D/nm
4.42% Ag0.7490.013137.67811.15
7.97% Ag0.5850.010237.74414.21
12.46% Ag0.5660.009837.74414.79
15.55% Ag0.6010.010437.70213.81
表2  不同Ag含量沉积SnSe薄膜试样衍射峰峰的半高宽、衍射角及晶粒尺寸
图2  不同Ag含量SnSe薄膜的表面形貌
图3  不同Ag含量SnSe薄膜的截面形貌
图4  不同Ag含量SnSe薄膜的电阻率与温度的关系
图5  不同Ag含量SnSe薄膜的Seebeck系数与温度的关系
图6  不同Ag含量SnSe薄膜的功率因子与温度的关系
[1] Zhao J, Xin C N, Han Y M, et al. Thermoelectric properties of Nb-doped lead telluride alloys [J]. Chin. J. Mater. Res., 2015, 29: 115
[1] (赵杰, 辛彩妮, 韩叶茂等. Nb掺杂碲化铅合金的热电性能 [J]. 材料研究学报, 2015, 29: 115)
[2] Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J]. Nature, 2014, 508: 373
pmid: 24740068
[3] Singh N K, Bathula S, Gahtori B, et al. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material [J]. J. Alloys Compd., 2016, 668: 152
[4] Zhang L J, Wang J L, Sun Q, et al. Three-Stage inter-orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals [J]. Adv. Energy. Mater., 2017, 7: 1700573
[5] Chen Y X, Ge Z H, Yin M J, et al. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping [J]. Adv. Funct. Mater., 2016, 26: 6836
[6] Li J C, Li D, Qin X Y, et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn [J]. Scripta Mater., 2017, 126: 6
[7] Jiang Z S, Qin X Y, Li D, et al. Realizing high thermoelectric performance in slightly Na-doped SnSe polycrystals [J]. Chin. J. Low Temp. Phys., 2017, 39(3): 12
[8] Luo Y B, Cai S T, Hua X, et al. High thermoelectric performance in polycrystalline SnSe via dual-doping with Ag/Na and nanostructuring with Ag8SnSe6 [J]. Adv. Energy Mater., 2018, 9: 1803072
[9] Gong Y, Chang C, Wei W, et al. Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping [J]. Scr. Mater., 2018, 147: 74
[10] Li J R, Xu J T, Wang H X, et al. Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping [J]. J. Mater. Sci. Mater. Electron., 2018, 29: 18727
[11] Zhao Q, Wang D Y, Qin B C, et al. Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS [J]. J. Solid State Chem., 2019, 273: 85
doi: 10.1016/j.jssc.2019.02.038
[12] Suen C H, Shi D L, Su Y, et al. Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition [J]. J. Mater., 2017, 3: 293
[13] Jia B H, Liu S Y, Li G J, et al. Study on thermoelectric properties of co-evaporated Sn-Se films with different phase formations [J]. Thin Solid Films, 2019, 672: 133
[14] Chen Z J, Shen T, Li K Y, et al. Effect of substrate temperature on structural and thermoelectric properties of RF magnetron sputtered SnSe thin film [J]. Funct. Mater. Lett., 2018, 12: 1950040
[15] Burton M R, Liu T J, Mcgettrick J, et al. Thin film tin Selenide (SnSe) thermoelectric generators exhibiting ultralow thermal conductivity [J]. Adv. Mater., 2018, 30: 1801357
doi: 10.1002/adma.v30.31
[16] Saini S, Mele P, Tiwari A. Influence of the planar orientation of the substrate on thermoelectric response of SnSe thin films [J]. J. Phys. Chem. Solids., 2019, 129: 347
[17] Urmila K S, Namitha T A, Rajani J, et al. Optoelectronic properties and Seebeck coefficient in SnSe thin films [J]. J. Semiconductors, 2016, 37: 93002
[18] Wang X. Preparation and properties of polycrystalline SnSe-based thermoelectric materials [D]. Shenyang: Liaoning University, 2016
[18] (王雪. 多晶硒化锡基热电材料的制备与性能研究 [D]. 沈阳: 辽宁大学, 2016)
[19] Li S H, Zhang X, Liu H L, et al. Synthesis and thermoelectric properties of Ag-doped SnSe [J]. J. Inorg. Mater., 2016, 31: 751
[19] (李松浩, 张忻, 刘洪亮等. Ag掺杂SnSe化合物的制备及热电性能 [J]. 无机材料学报, 2016, 31: 751)
[20] Liu E K, Zhu B S, Luo J S. Semiconductor Physics [M]. 7th ed. Beijing: Electronics Industry Press, 2008: 31
[20] (刘恩科, 朱秉升, 罗晋生. 半导体物理学 [M]. 第7版. 北京: 电子工业出版社, 2008: 31)
[21] Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag [J]. J. Mater. Chem., 2014, 2: 11171
[22] Chere E K, Zhang Q, Dahal K, et al. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe [J]. J. Mater. Chem., 2016, 4: 1848
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.