Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 175-183    DOI: 10.11901/1005.3093.2020.180
  综述 本期目录 | 过刊浏览 |
基于胶体微球自组装光子晶体的结构生色
李壮3, 须秋洁2, 刘国金1,3(), 张耘箫1, 周岚1, 邵建中1
1.浙江理工大学纺织科学与工程学院(国际丝绸学院) 杭州 310018
2.浙江理工大学服装学院 杭州 310018
3.浙江理工大学 浙江省纤维材料和加工技术研究重点实验室 杭州 310018
Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres
LI Zhuang3, XU Qiujie2, LIU Guojin1,3(), ZHANG Yunxiao1, ZHOU Lan1, SHAO Jianzhong1
1.College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
2.School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
3.Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
引用本文:

李壮, 须秋洁, 刘国金, 张耘箫, 周岚, 邵建中. 基于胶体微球自组装光子晶体的结构生色[J]. 材料研究学报, 2021, 35(3): 175-183.
Zhuang LI, Qiujie XU, Guojin LIU, Yunxiao ZHANG, Lan ZHOU, Jianzhong SHAO. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres[J]. Chinese Journal of Materials Research, 2021, 35(3): 175-183.

全文: PDF(9545 KB)   HTML
摘要: 

综述了近年来基于胶体微球自组装光子晶体结构生色的研究进展。先简要介绍了光子晶体和结构生色理论,然后阐述了以胶体微球为基本结构基元构筑光子晶体的自组装方法,探讨了光子晶体的结构色效果的表征方式和稳固性增强方法,最后总结了用胶体微球自组装法制备光子晶体的困难并展望了发展方向。

关键词 评述光子晶体仿生结构生色胶体微球结构基元自组装    
Abstract

This paper reviewed the recent progress of structural coloration of photonic crystals based on self-assembly of colloid microspheres. Firstly, photonic crystals and the corresponding structural coloration theory were simply introduced, then the different self-assembly methods of constructing photonic crystals with colloid microspheres as basic structural elements were presented. Characterization methods for the structural coloration and the stability enhancement of photonic crystals are further discussed, finally the difficulties encountered in the preparation of photonic crystals via self-assembly of colloid microspheres, and the future development direction were also mentioned.

Key wordsreview    photonic crystals    bionic    structural colors    colloidal microspheres    structural elements    self-assembly
收稿日期: 2020-05-22     
ZTFLH:  O734  
基金资助:国家自然科学基金(52003242);浙江省自然科学基金(LQ19E030022);浙江理工大学科研启动基金项目(18012212-Y);浙江理工大学2020年本科生科技创新计划项目
作者简介: 李壮,男,1996年生,硕士生
图1  光子晶体结构生色示意图
图2  重力沉降法示意图和光子晶体彩色膜的照片
图3  垂直沉积法示意图和基材双面着色的照片
图4  离心沉积法示意图和光子晶体片的照片
图5  电泳沉积法示意图和结构色纤维的照片
图6  丝网印花法示意图和光子晶体图案的照片
图7  数码喷印法示意图和光子晶体图案的照片
图8  “咖啡环”效应抑制过程的示意图[50]
图9  多角度分光光度仪测量光子晶体的示意图
图10  不同观察角度下光子晶体膜的照片和光子晶体芯片的原理图[52]
图11  制品的结构示意图[54]
1 Yi C H, Tan X D, Bie B H, et al. Practical and environment-friendly indirect electrochemical reduction of indigo and dyeing [J]. Sci. Rep-UK, 2020, 10(1): 183
2 Xu B B, Li Y Z, Song P, et al. Photoactive layer based on t-shaped benzimidazole dyes used for solar cell: from photoelectric properties to molecular design [J]. Sci. Rep-UK, 2017, 7(1): 911
3 Ru J D, Qian X R, Wang Y. Low-salt or salt-free dyeing of cotton fibers with reactive yyes using liposomes as dyeing/level-dyeing promotors [J]. Sci. Rep-UK, 2018, 8(1): 344
4 Barrera-patiño C P, Vollet-filho J D, Teixeira-rosa R G, et al. Photonic effects in natural nanostructures on morpho cypris and greta oto butterfly wings [J]. Sci. Rep-UK, 2020, 10(1): 457
5 Guo D Y, Chen C W, Li C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(8): 94
6 Zhang J, Meng Z J, Liu J, et al. Spherical colloidal photonic crystals with selected lattice plane exposure and enhanced color saturation for dynamic optical displays [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42629
7 Petrova I, Konopsky V, Nabiev I, et al. Label-free flow multiplex biosensing via photonic crystal surface mode detection [J]. Sci. Rep-UK, 2019, 9(1): 669
8 Chen X, Xia L, Li C. Surface plasmon resonance sensor based on a novel d-shaped photonic crystal fiber for low refractive index detection [J]. IEEE Photonics J., 2018, 10(1): 1
9 Niu W B, Zhang L L, WANG Y P, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management [J]. ACS Appl. Mater. Inter., 2019, 11(35): 32261
10 Yavuza1G, Zilleb A, Seventekin N,et al. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals [J]. Carbohyd. Polym., 2018, 193:343
11 Dalmis R, Birlik I, Azem N F A, et.al. Modification of the sedimentation method for PMMA photonic crystal coatings [J]. Colloid Surface A., 2019, 577: 194
12 Przybylski D, Patela S. Modelling of a two-dimensional photonic crystal as an antireflection coating for optoelectronic applications [J]. OPTO-electron. Rev., 2019, 27(1): 79
13 Kim S, Lee S Y, Yang S, et al. Self-assembled colloidal structures for photonics [J]. NPG Asia Mater., 2011, 3(1): 25
14 Chen C T, Pedrini J, Gaulding E A, et al. Very high refractive index transition metal dichalcogenide photonic conformal coatings by conversion of ALD metal oxides [J]. Sci. Rep-UK., 2019, 9(1): 214
15 Liu Y, Hu J, Wu Z H. Fabrication of coatings with structural color on a wood surface [J]. Coatings, 2020, 10(1): 32
16 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett, 1987, 58(20): 2059
17 John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486
18 Keskin O.Y, Dalmis R, Bilbirlik I,et al. Comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CuO/TiO2 one-dimensional photonic crystals [J]. J. Alloy. Compd., 2020, 817(C): 153262
19 Segovia-chaves F, Vinck-posada H, A.Gómez E. Superconducting one dimensional photonic crystal with coupled semiconductor defects [J]. Optik, 2020, 209: 164572
20 Ge D H, Li J P, Ma C, et al. Effect of windmill-like-shaped defect on tm photonic band gaps of two-dimensional square-lattice photonic crystals [J]. Results Phys., 2020, 16: 102879
21 Rezaei B, Giden I, Zakerhamidi M S, et al. Two-dimensional hybrid photonic crystal with graded low-index using a nonuniform voltage [J]. Z. Naturforsch. A, 2019, 75(1): 65
22 Wang J Y, Yuan Y C, Zhu H, et al. Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator [J]. Nano Energy, 2020, 67: 104217
23 Dolganov P V, Baklanova K D, Dolganov V K. Optical properties and photonic density of states in one-dimensional and three-dimensional liquid-crystalline photonic crystals [J]. Liq. Cryst., 2020, 47(2): 231
24 Tilley R J D. Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and colour [M]. New York: John Wiley & Sons, Ltd., 2010
25 Meng J Y, Xian Z Y, Li X, et al. Preparation and application of photonic crystal fibers [J]. Mater. Rev., 2018, 31(5): 106
25 孟佳意, 县泽宇, 李昕等. 光子晶体纤维的制备及应用 [J]. 材料导报, 2018, 31(5): 106
26 Luis G., Baert K, Kolaric B, et al. Linear and nonlinear optical properties of colloidal photonic crystals [J]. Chem. Rev., 2012, 112(4): 2268
27 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77
28 Comoretto D, Grassi R, Marabelli F, et al. Growth and optical studies of opal films as three-dimensional photonic crystals [J]. Mater. Sci. Eng. C, 2003, 23(1-2): 61
29 Schroden R C, Al-daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals [J]. Chem. Mater., 2002, 14(8): 3305
30 You B, Wen N G, Shi L, et al. Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties [J]. J. Mater. Chem. C, 2009, 19:3594
31 Wang W, Gu B, Liang L, et al. Fabrication of two-dimensional and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B, 2003, 107(15): 3400
32 Gao W, Rigout M, Owens H. Optical properties of cotton and nylon fabrics coated with silica photonic crystals [J]. Opt. Mater. Express, 2017, 7(2): 341
33 Gao W, Rigout M, Owens H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum [J]. Appl. Surf. Sci., 2016, 380: 12
34 Lai C F, Wang Y C. Colloidal photonic crystals containing silver nanoparticles with tunable structural colors [J]. Crystals, 2016, 6(5): 61
35 Zhou L, Wu Y, Chai L, et al. Study on the formation of three-dimensionally ordered SiO2 photonic crystals on polyester fabrics by vertical deposition self-assembly [J]. Text. Res. J., 2016, 86(18): 1973
36 Zhang J, Luo X Y, Yan X, et al. Fabrication of high-quality colloidal crystal films by vertical deposition method integrated with a piezoelectric actuator [J]. Thin Solid Films, 2010, 518(18): 5204
37 Liu G J, Zhou L, Wu Y, et al. The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly [J]. J. Appl. Polym. Sci., 2015, 132(13): 1
38 Tsuchiys M, Kurashina Y, Onoe H. Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads [J]. Sci. Rep-UK., 2019, 9(1): 1
39 Han J W, Qin J J, Li X, et al. Fabrication of opal/inverse opal structure by vertical deposition and centrifugal sedimentation [J]. Mater. Sci., 2017, 7(3): 353
39 韩吉薇, 秦俊杰, 李雪等. 垂直沉积和离心沉降的蛋白石结构与反蛋白石结构的制备研究 [J]. 材料科学, 2017, 7(3): 353
40 Huang D, Zeng M, Wang L, et al. Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots [J]. RSC Adv., 2018, 8(61): 34839
41 Liu Z F, Zhang Q H, Wang H Z, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method [J]. Nanoscale, 2013, 5(15): 6917
42 Louh R F, Huang Y J, Tsai Y C, et al. Fabrication andcharacterization of 3-D photonic crystals of various microspheres by electrophoretic self-assembly [J]. Key. Eng. Mater., 2015, 654(2): 106
43 Yuan X, Liu Z, Shang S, et al. Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method [J]. RSC Adv., 2016, 6(20): 16319
44 Yoon S Y, Kim H K. Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors [J]. Surf. Coat. Technol., 2020, 384(C): 1
45 Gomes P, Tama D, Carvalho H, et al. Resistance variation of conductive ink applied by the screen printing technique on different substrates [J]. Color. Technol., 2020, 136(2): 130
46 Zhou C T, Qi Y, Zhang S F, et al. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing [J]. Dyes Pigm., 2020, 176: 108226
47 Nam H, Song K, Ha D, et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors [J]. Sci. Rep-UK, 2016, 6(1): 2059
48 Bai L, Xie Z Y, Wang W, et al. Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing [J]. ACS Nano, 2014, 8(11): 11094
49 Ding H B, Zhu C, Tian L, et al. Structural color patterns by electrohydrodynamic jet printed photonic crystals [J]. ACS Appl. Mater. Interfaces, 2017, 9(13): 11933
50 Liu G J, Zhou L, Zhang G Q, et al. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using inkjet printing technology [J]. Mater. Des., 2017, 114: 10
51 Wu Y, Zhou L, Dai X L, et al. Preparation and application of structural coloration inks composed of disperse dyes/P (St-BA-MAA) composite microspheres [J]. Text Dyeing and Finishing Journal, 2020, 42(3): 24
51 吴钰, 周岚, 戴香玲等. 分散染料/P(St-BA-MAA)复合微球结构生色墨水的制备及应用 [J]. 染整技术, 2020, 42(3): 24
52 Qin M, Huang Y, Li Y N, et al. A rainbow structural-color chip for multisaccharide recognition [J]. Angew. Chem. Int. Ed., 2016, 55(24): 6911
53 Li Y C, Zhou L, Liu G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates [J]. Appl. Surf. Sci., 2018, 444:145
54 Shi X D, He J L, Xie X h, et al. Photonic crystals with vivid structure color and robust mechanical strength [J]. Dyes Pigm., 2019, 165:137
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] 邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[7] 宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展[J]. 材料研究学报, 2021, 35(6): 401-410.
[8] 赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
[9] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[10] 郎振乾, 叶政, 杨健, 黄继华. 单晶高温合金表面缺陷焊接修复的研究进展[J]. 材料研究学报, 2021, 35(3): 161-174.
[11] 俞建忠, 许新玲, 叶松. 载银沸石应用的研究进展[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.
[13] 欧金花, 胡波年, 王薇, 韩瑜. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC[J]. 材料研究学报, 2020, 34(9): 683-690.
[14] 熊校勤, 张洪权, 方婵雨. 直链淀粉-鹅去氧胆酸接枝聚合物的合成及其自组装行为[J]. 材料研究学报, 2020, 34(8): 569-574.
[15] 侯志全,郭萌,刘雨溪,邓积光,戴洪兴. 金属间化合物的合成及其催化应用[J]. 材料研究学报, 2020, 34(2): 81-91.