Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 452-458    DOI: 10.11901/1005.3093.2019.493
  研究论文 本期目录 | 过刊浏览 |
超快温度响应性纳米纤维水凝胶的制备及其用于药物的可控释放
郑勰1,2, 查刘生1,2()
1.东华大学 纤维材料改性国家重点实验室 上海 201620
2.东华大学材料科学与工程学院 上海 201620
Preparation of Ultra-fast Temperature Responsive Nanofibrous Hydrogel and Application in Controllable Drug Release
ZHENG Xie1,2, ZHA Liusheng1,2()
1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
2.College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
引用本文:

郑勰, 查刘生. 超快温度响应性纳米纤维水凝胶的制备及其用于药物的可控释放[J]. 材料研究学报, 2020, 34(6): 452-458.
Xie ZHENG, Liusheng ZHA. Preparation of Ultra-fast Temperature Responsive Nanofibrous Hydrogel and Application in Controllable Drug Release[J]. Chinese Journal of Materials Research, 2020, 34(6): 452-458.

全文: PDF(3444 KB)   HTML
摘要: 

先使用N-异丙基丙烯酰胺和N-羟甲基丙烯酰胺合成共聚物,以其为成纤聚合物用静电纺丝工艺制备纳米纤维,然后进行高速搅拌将纳米纤维切短并分散在叔丁醇中,最后进行冷冻干燥和热处理将切短的纳米纤维组装成具有多级多孔结构的纳米纤维水凝胶。这种纳米纤维水凝胶在水中具有良好的稳定性、压缩回弹性和显著的温度响应性。当水介质温度在20~55℃交替变化时它具有超快的温度响应性,达到消溶胀平衡的时间为34 s,达到溶胀平衡的时间为45 s。体外药物释放实验结果表明,当pH值为7.4的磷酸盐缓冲溶液的温度在15~47℃交替变化时,其中浸入的载模型药物葡聚糖的温度响应性纳米纤维水凝胶以“开/关”模式可控释放药物。

关键词 有机高分子材料温度响应性纳米纤维水凝胶静电纺丝药物可控释放    
Abstract

The nanofibers were firstly prepared by static electrospinning process using the fiber-forming copolymer synthesized from N-isopropylacrylamide and N-methylol acrylamide, and then they were shortened and dispersed in tert-butanol by high-speed stirring. Finally, the shortened nanofibers were assembled into nanofibrous hydrogel with hierarchical porous structure by the processes of freeze drying and followed heat treatment. The resultant nanofibrous hydrogel in aqueous medium holds excellent stability, compression resilience and remarkable temperature-responsiveness. When the temperature of an aqueous medium changed alternately between 20℃ and 55℃, in which the nanofibrous hydrogel reached its swelling- and deswelling-equilibrium state within 34 s and 45 s respectively, exhibiting ultra-fast temperature responsiveness. In vitro drug release experiment results show that when the temperature of the phosphate buffered solution of pH7.4 is altered alternately between 15oC and 47oC the immersed dextran (model drug) loaded nanofibrous hydrogel can controllably release the drug by ''on/off'' mode.

Key wordsorganic polymer materials    temperature responsive nanofibrous hydrogel    static electrospinning    controllable drug release
收稿日期: 2019-10-25     
ZTFLH:  TQ430.50  
基金资助:国家自然科学基金(51373030)
作者简介: 郑勰,男,1991年生,博士
图1  PNN的1H NMR谱图和质量分数约为0.1%的PNN水溶液的500 nm波长光透过率与温度的关系
图2  PNN纳米纤维不同放大倍数的SEM照片
图3  不同形状温度响应性纳米纤维水凝胶的照片、温度响应性纳米纤维水凝胶不同放大倍数的SEM照片、温度响应性纳米纤维水凝胶在300 r/min转速下振荡24 h前后外观照片、传统的温度响应性PNIPAM水凝胶受到刀片压缩前后及其移除后的外观照片以及温度响应性纳米纤维水凝胶受到刀片压缩前后及其移除后的外观照片
图4  纳米纤维水凝胶和PNIPAM水凝胶的V/V0随温度变化的曲线、纳米纤维水凝胶交替放入20℃和55℃水中测得的V/V0随时间变化的曲线和纳米纤维水凝胶交替6次浸入20℃和55℃水中达到溶胀或收缩平衡后测得的V/V0
图5  负载FITC-葡聚糖的温度响应性纳米纤维水凝胶和传统的PNIPAM水凝胶响应温度在15~47℃间交替变化释放的药物累积量曲线
[1] Wei M L, Gao Y F, Li X, et al. Stimuli-responsive polymers and their applications [J]. Polym. Chem., 2017, 8: 127
doi: 10.1039/C6PY01585A
[2] Sánchez-Moreno P, De Vicente J, Nardecchia S, et al. Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications [J]. Nanomaterials (Basel), 2018, 8: 935
doi: 10.3390/nano8110935
[3] Matsuo E S, Tanaka T. Kinetics of discontinuous volume–phase transition of gels [J]. J. Chem. Phys., 1988, 89: 1695
[4] Liu Z, Wei J, Faraj Y, et al. Smart hydrogels: network design and emerging applications [J]. Can. J. Chem. Eng., 2018, 96: 2100
doi: 10.1002/cjce.v96.10
[5] Kaneko Y, Nakamura S, Sakai K, et al. Rapid deswelling response of poly (N-isopropylacrylamide) hydrogels by the formation of water release channels using poly (ethylene oxide) graft chains [J]. Macromolecules, 1998, 31: 6099
doi: 10.1021/ma971899g
[6] Zhang G Q, Zha L S, Zhou M H, et al. Rapid deswelling of sodium alginate/poly (N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes [J]. Colloid Polym. Sci., 2004, 283: 431
doi: 10.1007/s00396-004-1172-6
[7] Liu G Q, Zha L S, Liang B R. Preparation of fast temperature responsive porous poly (N-isopropylacrylamide) hydrogels using sodium alginate as pore-making agent in sodium chloride solutions [J]. Acta Polym. Sin., 2009, (7): 633
doi: 10.3724/SP.J.1105.2009.00633
[7] (刘高齐, 查刘生, 梁伯润. 在NaCl溶液中以海藻酸钠为致孔剂制备快速温度响应型多孔聚(N-异丙基丙烯酰胺)水凝胶 [J]. 高分子学报, 2009, (7): 633)
doi: 10.3724/SP.J.1105.2009.00633
[8] Xia L W, Xie R, Ju X J, et al. Nano-structured smart hydrogels with rapid response and high elasticity [J]. Nat. Commun., 2013, 4: 2226
doi: 10.1038/ncomms3226 pmid: 23900497
[9] Chen S Y, Wang L Y, Dong X, et al. Fabrication of monodispersed Au@Ag bimetallic nanorod-loaded nanofibrous membrane with fast thermo-responsiveness and its use as a smart free-standing SERS substrate [J]. RSC Adv., 2016, 6: 48479
doi: 10.1039/C6RA04247C
[10] Kim Y J, Ebara M, Aoyagi T. Temperature-responsive electrospun nanofibers for ‘on-off’ switchable release of dextran [J]. Sci. Technol. Adv. Mater., 2012, 13: 064203
doi: 10.1088/1468-6996/13/6/064203 pmid: 27877530
[11] Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates [J]. Prog. Polym. Sci., 2004, 29: 1173
doi: 10.1016/j.progpolymsci.2004.08.003
[12] Zhang Q S, Zha L S, Ma J H, et al. A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process [J]. J. Colloid Interface Sci., 2009, 330: 330
doi: 10.1016/j.jcis.2008.09.077 pmid: 19027914
[13] Nagase K, Nagumo Y, Kim M, et al. Local release of VEGF using fiber mats enables effective transplantation of layered cardiomyocyte sheets [J]. Macromol. Biosci., 2017, 17(8). DOI: 10.1002/mabi.201700073
pmid: 28371343
[14] Chen L N, Chiu Y C, Hung J J, et al. Multifunctional electrospun nanofibers prepared from poly ((N-isopropylacrylamide)-co-(N-hydroxymethylacrylamide)) and Their Blends with 1,2-Diaminoanthraquinone for NO gas detection [J]. Macromol. Chem. Phys., 2014, 215: 286
doi: 10.1002/macp.201300604
[15] Naficy S, Brown H R, Razal J M, et al. Spinks a P W. Progress toward robust polymer hydrogels [J]. Aust. J. Chem., 2011, 64: 1007
doi: 10.1071/CH11156
[16] Wang L Y, Chen S Y, Zhou J F, et al. Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip-catalyst with temperature-tunable catalytic activity [J]. Macromol. Mater. Eng., 2017, 302: 1700181
doi: 10.1002/mame.v302.10
[1] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[2] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[5] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 许文萃, 林英正, 邵再东, 郑煜铭, 程璇, 钟鹭斌. 碳纳米纤维气凝胶的制备及其吸油性能[J]. 材料研究学报, 2021, 35(11): 820-826.