Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 102-110    DOI: 10.11901/1005.3093.2022.150
  研究论文 本期目录 | 过刊浏览 |
FeCo/SnO2 复合纳米纤维的制备及其吸波性能
张开银1, 王秋玲1, 向军2()
1.武夷学院机电工程学院 武夷山 354300
2.江苏科技大学理学院 镇江 212100
Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers
ZHANG Kaiyin1, WANG Qiuling1, XIANG Jun2()
1.School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China
2.School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
Kaiyin ZHANG, Qiuling WANG, Jun XIANG. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. Chinese Journal of Materials Research, 2023, 37(2): 102-110.

全文: PDF(5307 KB)   HTML
摘要: 

用静电纺丝和氢气还原法制备FeCo/SnO2复合纳米纤维并使用X射线衍射、扫描电子显微镜、振动样品磁强计和矢量网络分析仪等手段分析表征其结构、形貌、磁性及电磁特性,研究了SnO2含量对复合纳米纤维的吸波性能的影响。结果表明,添加适量的SnO2可显著提高FeCo纳米纤维的吸波性能。用SnO2摩尔含量为20%的复合纳米纤维制备的厚度仅为1.4 mm的涂层,在频率10.95 GHz处最小反射损耗(RL)为-40.2 dB,有效吸收带宽(RL≤-10 dB)为2.64 GHz (9.75-12.39 GHz),厚度减小到1.0 mm的涂层其最大有效吸收带宽为4.16 GHz,频率范围为13.84~18.00 GHz。涂层吸波性能优异的主要原因,是阻抗匹配的改善、磁性FeCo合金与介电SnO2的电磁损耗协同作用、加强的界面极化驰豫以及纳米纤维形成的三维网络结构产生的多重反射与散射。

关键词 复合材料FeCo合金SnO2纳米纤维微波吸波静电纺丝    
Abstract

A novel nanofibrous absorber composed of FeCo alloy and SnO2 has been synthesized through electrospinning coupled with hydrogen reduction. Its structure, morphology, magnetic and electromagnetic properties were characterized by X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, and the effect of the molar ratio of SnO2 to FeCo on the microwave absorption properties of the composite nanofibers is investigated. It was found that the introduction of an appropriate amount of SnO2 can significantly enhance the microwave absorption properties of FeCo/SnO2 nanofibers as a result of the improved impedance matching, the good synergistic effect between magnetic FeCo alloy and dielectric SnO2, and the enhanced interfacial polarization relaxation, as well as the multiple scattering and reflection caused by the 3D network structure formed by the nanofibers. When the SnO2 molar content in the nanofibers is 20% the minimal reflection loss value of -40.2 dB is obtained at 10.95 GHz for a thin coating of 1.4 mm, and the corresponding effective absorption bandwidth with reflection loss lower than -10.0 dB is about 2.64 GHz (9.75-12.39 GHz). Moreover, when the coating thickness is reduced to 1.0 mm, the effective absorption bandwidth reaches 4.16 GHz (13.84~18.00 GHz). These excellent absorbing performances suggest that the FeCo/SnO2 composite nanofibers designed here could be a promising electromagnetic absorbing material with a strong and broad absorption band.

Key wordscomposite    FeCo alloys    SnO2    nanofibers    microwave absorption    electrospinning
收稿日期: 2022-03-17     
ZTFLH:  TB333  
基金资助:福建省自然科学基金(2020J01393);国家自然基金(51271059);武夷学院引进人才科研启动项目(YJ202115);武夷学院引进人才科研启动项目(YJ202116)
作者简介: 张开银,男,1973年生,教授
图1  FeCo/SnO2纳米复合纤维的XRD谱
图2  FCSO0、FCSO1和FCSO2的FESEM照片
图3  FeCo/SnO2纳米复合纤维的室温磁滞回线
图4  FeCo/SnO2纳米复合纤维的复介电常数、介电损耗正切、复磁导率和磁损耗正切的频率依赖性
图5  FCSO0、FCSO1和FCSO2的Cole-Cole曲线及其μ″(μ' )–2f–1值
图6  FCSO0、FCSO1和FCSO2的RL曲线以及λ/4条件下厚度与RL峰值频率的关系
SampleLoading /%, mass fractionRLmin (dB)/ Thickness (mm)EABmax (GHz)/Thickness (mm)Ref.
FeCo@SnO2 nanosheets70-49.1 / 1.7511.7 / 1.7525
Flower-like ZnO@Ni60-48.0/2.05.3/1.526
Co@SiO275-15.0/2.894.5 / 2.8927
Fe/ZnO50-48.28 / 1.595.1 / 1.928
Ni@SnO250-50.2 / 1.54.8 / 1.729
FeCo@TiO2@Fe3O470-35.4 / 2.53.0 / 2.530
FCSO150-40.2 / 1.44.16 / 1.0This work
表1  部分铁磁金属/介电氧化物复合材料的吸波性能
图7  FeCo/SnO2复合纳米纤维的衰减常数和阻抗匹配率
1 Green M, Chen X. Recent progress of nanomaterials for microwave absorption [J]. J. Materiomics. 2019, 5: 503
doi: 10.1016/j.jmat.2019.07.003
2 Kong J, Gao H, Li Y, et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials [J]. Mater. Rep., 2020, 34(5): 09055
2 孔 静, 高 鸿, 李 岩 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展 [J]. 材料导报, 2020, 34(5): 09055
3 Lv T, Zhang C W, Liu J, et al. Research progress in metamaterial absorber [J]. Acta. Mater. Compos. Sin., 2021, 38(1): 25
3 吕 通, 张辰威, 刘 甲 等. 吸波材料研究进展 [J]. 复合材料学报, 2021, 38(1): 25
4 Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res., 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
4 刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
5 Chen Z W, Fan X M, Huang X X, et al. Research progress and prospestion on high-temperature wave-absorbing ceramic materials [J]. Adv. Ceram., 2020, 41(1-2): 1
5 陈政伟, 范晓孟, 黄小萧 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(1-2): 1
6 Xiang J, Li J L, Zhang X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers [J]. J.Mater.Chem.A., 2014, 2: 16905
7 Quan B, Liang X H, Xu G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation [J]. New J. Chem., 2017, 41: 1259
doi: 10.1039/C6NJ03052A
8 Zhu X Y, Qiu H F, Chen P. Preparation and electromagnetic wave absorbing properties of composites of cobalt coated graphitic carbon nitride Co@CNTs [J]. Chin. J. Mater. Res., 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
8 朱晓宇, 邱红芳, 陈 平. Co@CNT复合电磁波吸收剂的制备及其吸波性能 [J]. 材料研究学报, 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
9 Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
9 褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
10 Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloy. Comp., 2019, 785: 765
doi: 10.1016/j.jallcom.2019.01.271
11 Liu D W, Qiang R, Du Y C, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption [J]. J. Colloid. Interf. Sci., 2018, 514: 10
doi: S0021-9797(17)31403-0 pmid: 29227802
12 Zhou C H, Wu C, Yan M. A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 370: 988
doi: 10.1016/j.cej.2019.03.295
13 Yang B, Wu Y, Li X P, et al. Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers [J]. Mater. Design., 2017, 136: 13
14 Song W Z. Design, preparation and microwave absorbing properties of FeCo/ZnO Composites [D]. Zhengzhou: Zhengzhou University of Aeronautics, 2019
14 宋文正. FeCo/ZnO复合材料的设计制备及吸波性能研究 [D]. 郑州: 郑州航空工业管理学院, 2019
15 Xu Z J, Guo J, Du B S, et al. Influence of microstructure on waves resonance of FeCo/TiO2 nanocomposites [J]. J. Funct. Mater., 2016, 47(): 148
15 徐志洁, 郭 杰, 杜宝盛 等. 微观结构对FeCo/TiO2纳米复合材料微波共振的影响 [J]. 功能材料, 2016, 47(): 148
16 Zhou X W, Wang Z G, Wang Q, et al. Preparation and microwave absorbing properties of graphene/SnO2 nanofiber hybrids [J]. 2019, Met. Funct. Mater., 2019, 26(2): 11
16 周小文, 王志国, 王 倩 等. 石墨烯/SnO2 纳米纤维复合材料的制备及吸波性能的研究 [J]. 金属功能材料, 2019, 26(2): 11
17 Bokuiaeva A O, Vorokh A S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder [J]. J. Phys.: Conf. Ser., 2019, 1410: 012057
18 Li D W, Du Y C, Li Z N, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties [J]. J. Mater. Chem. C., 2018, 6: 9615
doi: 10.1039/C8TC02931H
19 Zhang X, Rao Y, Guo J, et al. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption[J]. Carbon, 2016, 96: 972
doi: 10.1016/j.carbon.2015.09.087
20 Ma J, Li J G, Ni X, et al. Microwave resonance in Fe/SiO2 nanocomposite [J]. Appl. Phys. Lett., 2009, 95:102505
doi: 10.1063/1.3224883
21 Wang H, Daiy Y, Gong W J, et al. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances [J]. Appl. Phys. Lett., 2013, 102: 223113
doi: 10.1063/1.4809675
22 Aharoni A. Exchange resonance modes in a ferromagnetic sphere [J]. J. Appl. Phys., 1991, 69: 7762
doi: 10.1063/1.347502
23 Green M, Tran T V, Chen X. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery [J]. Adv. Mater. Interfaces., 2020, 7(18): 2000658
doi: 10.1002/admi.202000658
24 Huang X G, Zhang J, Lai M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers [J]. J. Alloy. Compd., 2015, 627: 367
doi: 10.1016/j.jallcom.2014.11.235
25 Lv H P, Wu C, Qin F X, et al. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mat. Sci. Tech., 2021, 90: 1
26 Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
doi: 10.1039/C4TA06053A
27 Yuan Y, Liu C, Jiang J T, et al. Study on properties of Co/SiO composite particles of micron scale [J]. Aerospace Shanghai, 2018, 35(1): 75
27 袁 勇, 刘 超, 姜建堂, 甄 良. 微米级Co/SiO2复合颗粒性能研究 [J]. 上海航天, 2018, 35(1): 75
28 Liu Q, Dai J X, Hu F, et al. Core-shell structured Fe/ZnO composite with superior electromagnetic wave absorption performance [J]. Ceram. Inter., 2021, 47: 14506
doi: 10.1016/j.ceramint.2021.02.030
29 Zhao B, Guo X, Zhao W, et al. Yolk-shell Ni@ SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 28917
doi: 10.1021/acsami.6b10886
30 Chen P A, Wang X, Zhu Y L, et al. Antioxidation and microwave absorption of flattened FeCo@TiO2@Fe3O4 core-shell composites [J]. J Chin Ceram Soc, 2021, 49(10): 2203
30 陈平安, 王 昕, 朱颖丽. 扁平FeCo@TiO2@Fe3O4核壳结构抗氧化和微波吸收性能 [J]. 硅酸盐学报, 2021, 49(10): 2203
31 Guan G G, Gao G J, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption [J]. ACS Appl. Nano Mater., 2020, 3: 8424
doi: 10.1021/acsanm.0c01855
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.