Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 248-256    DOI: 10.11901/1005.3093.2021.637
  研究论文 本期目录 | 过刊浏览 |
温度响应性双面纳米纤维的制备和性能
张锦中1, 刘晓云2(), 杨健茂2, 周剑锋2, 查刘生1()
1.纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
2.东华大学分析测试中心 上海 201620
Preparation and Properties of Temperature-Responsive Janus Nanofibers
ZHANG Jinzhong1, LIU Xiaoyun2(), YANG Jianmao2, ZHOU Jianfeng2, ZHA Liusheng1()
1.State Key Laboratory of Fiber Material Modification, School of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2.Analysis and Testing Center, Donghua University, Shanghai 201620, China
引用本文:

张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
Jinzhong ZHANG, Xiaoyun LIU, Jianmao YANG, Jianfeng ZHOU, Liusheng ZHA. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. Chinese Journal of Materials Research, 2023, 37(4): 248-256.

全文: PDF(10069 KB)   HTML
摘要: 

使用N-异丙基丙烯酰胺和丙烯酰氧基二苯甲酮共聚合成的温度响应性聚合物和以用甲基丙烯酸缩水甘油酯改性的聚乙烯醇为成纤聚合物、以水为溶剂,配制纺丝液并将并列静电纺丝和紫外光辐照相结合制备出升温可卷曲的温度响应性双面纳米纤维。用扫描电镜和透射电镜均观察到这种纳米纤维具有双面结构,用核磁共振波谱仪证实用紫外光辐照可使双面纳米纤维中形成交联结构。研究了并列静电纺丝的工艺条件对双面纳米纤维的产率和平均直径的影响。结果表明,在两种纺丝液的流速不超过0.3 mL/h、纺丝电压不超过22 kV的条件下双面纳米纤维的产率高于90%,改变接收距离可在一定范围内调节双面纳米纤维的平均直径。这种双面纳米纤维在水中具有良好的稳定性,其中可水溶的聚合物含量(质量分数)低于2%。当水介质温度从25℃升高到35℃时,这种纳米纤维从伸展形态转变为卷曲的形态。这种对温度的响应性具有可逆性。

关键词 复合材料双面纳米纤维温度响应性并列静电纺丝紫外光辐照升温可卷曲    
Abstract

A temperature-responsive polymer was synthesized by co-polymerization of N-isopropylacrylamide and acryloyloxybenzophenone. Meanwhile, poly(vinyl alcohol) (PVA) was modified by glycidyl methacrylate. Taking the synthesized polymer and the modified PVA as fiber-forming precursor reagents, of which spinning solutions were then prepared, respectively as the raw materials for producing fiber. Finally, the temperature-responsive Janus nanofibers were fabricated by side-by-side electrospinning under UV irradiation. Scanning electron microscope and transmission electron microscope observation results show that the prepared nanofibers have double-faced structure. The results of nuclear magnetic resonance spectroscopy reveal that the applied ultraviolet irradiation facilitates the formation of crosslinking structure for the double-faced nanofibers. The effect of side-by-side electrospinning process conditions on the yield and average diameter of the Janus nanofibers was investigated, it was found that the yield of the Janus nanofibers can exceed 90% when the flow rates of the two spinning solutions are less than 0.3 mL/h and the spinning voltage is lower than 22 kV. In addition, the average diameter of the Janus nanofibers can be adjusted by changing the receiving distance within a certain range. The prepared Janus nanofibers with a water-soluble polymer content (mass fraction) of less than 2% have good stability in water. When the temperature of the aqueous medium increased from 25℃ to 35℃, the prepared Janus nanofibers can transform from a stretching configuration to a curling one, and this temperature-responsiveness is reversible.

Key wordscomposite    Janus nanofibers    side-by-side electrospinning process    temperature-responsiveness    curling upon temperature rising    ultraviolet light radiation
收稿日期: 2021-11-15     
ZTFLH:  TQ430.50  
基金资助:国家自然科学基金(51373030);国家自然科学基金(51503033)
作者简介: 张锦中,男,1994年生,博士生
图1  制备MPVA/PNA双面纳米纤维的装置示意图
图2  MPVA的1H NMR谱和MPVA的13C NMR谱
图3  PNA-2和PNIPAM的1H NMR谱、三批PNA的水溶液在500 nm处的吸光度与温度的关系(A-T)及其微分曲线(dA/dT-T)(插图)
PNA SampleFeeding percentage of ABP/NIPAM / %, mole fractionTested percentage of ABP/NIPAM / %, mole fractionLCST / ℃
PNA-11.00.830.9
PNA-21.51.129.2
PNA-32.01.722.7
表1  三批PNA分子链中ABP/NIPAM摩尔百分比和LCST测试结果
图4  用并列静电纺丝制备的MPVA/PNA双面纳米纤维的外观照片、MPVA/PNA双面纳米纤维的SEM照片、MPVA/PNA双面纳米纤维的TEM照片以及MPVA/PNA双面纳米纤维的1H NMR谱
SampleFlow rate /mL·h-1Spinning voltage/kVCollection distance/cmAverage width of JNF/nmProductivity of JNF/%
JNF-10.22215588±8392
JNF-20.32215759±5396
JNF-30.42215//
JNF-40.32015842±6990
JNF-50.32215759±5396
JNF-60.32415424±34654
JNF-70.32210227±6294
JNF-80.32215759±5396
JNF-90.32220947±7292
表2  用不同并列静电纺丝工艺制备的MPVA/PNA双面纳米纤维的产率和平均直径
图5  在不同并列静电纺丝工艺条件下制备的MPVA/PNA双面纳米纤维的SEM照片
图6  样品JNF-8在水中浸泡6 h干燥后的SEM照片和浸在水中的样品JNF-8以300 r/min频率振荡2 h干燥后的SEM照片
图7  在温度不同的水介质中MPVA/PNA双面纳米纤维(JNF-8)的显微照片
1 Huang C, Soenen S J, RejmanJ, et al. Stimuli-responsive electrospun fibers and their applications[J]. Chemical Society Reviews, 2011, 40: 2417
doi: 10.1039/c0cs00181c pmid: 21390366
2 Zheng X, Zha L S. Preparation of ultra-fast temperature-responsive nanofiber hydrogels and their use for controlled release of drugs[J]. Chinese Journal of Materials Research, 2020, 34(6): 452
2 郑 勰, 查刘生. 超快温度响应性纳米纤维水凝胶的制备及其用于药物的可控释放[J]. 材料研究学报, 2020, 34(6): 452
3 Chen R, Lin L, Wang H, et al. Effects of morphologies of thermo-sensitive electrospun nanofibers on controllable drug release[J]. Tissue Engineering Part A, 2020: 11
4 Fu G D, Xu L Q, Yao F, et al. Smart nanofibers from combined living radical polymerization, "click chemistry", and electrospinning[J]. ACS Applied Materials & Interfaces, 2009, 1(2): 239
5 Wang Y, Lai C, Hu H, et al. Temperature-responsive nanofibers for controllable oil/water separation[J]. RSC Advances, 2015, 5: 51078
doi: 10.1039/C5RA08851H
6 Wang L, ChenS, ZhouJ, et al. Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip-catalyst with temperature-tunable catalytic activity[J]. Macromolecular Materials and Engineering, 2017: 1700181
7 Chen Z, Chen Z F, Zhang A L, et al. Electrospunnanofibers for cancer diagnosis and therapy[J]. Biomaterials Science, 2016, 4(6): 922
doi: 10.1039/C6BM00070C
8 Liu M H, Duan X P, Li, Y M, et al. Electrospunnanofibers for wound healing[J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 76: 1413
9 Marvin G, Ling P, Matthias B, et al. Tailoring the morphology of responsive bioinspired bicomponent fibers[J]. Macromolecular Materials and Engineering, 2018, 303(1): 1700248
doi: 10.1002/mame.v303.1
10 Zhang K, Feng Q, Fang Z, et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics[J]. Chemical Reviews, 2021, 121(18): 11149
doi: 10.1021/acs.chemrev.1c00071 pmid: 34189903
11 Wei M L, Gao Y F, Li X, et al. Stimuli-responsive polymers and their applications[J]. Polym. Chem., 2017, 8: 127
doi: 10.1039/C6PY01585A
12 Jiang S, Jin Q, Agarwal S. Template assisted change in morphology from particles to nanofibers by side‐by‐side electrospinning of block copolymers[J]. Macromolecular Materials and Engineering, 2014, 299(11): 1298
doi: 10.1002/mame.201400059
13 Bakhsheshi-Rad H R, Ismail A F, Aziz M, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment[J]. International Journal of Biological Macromolecules, 2020, 149: 513
doi: S0141-8130(19)34965-7 pmid: 31954780
14 Fukae R, Nakata K, Takeo M, et al. Biodegradation of PVAs with various stereoregularities[J]. Sen'iGakkaishi, 2000, 56(5): 254
15 Crispim E G, Piai J F, Rubira A F, et al. Addition of methacryloil groups to poly (vinyl alcohol) in DMSO catalyzed by TEMED: Optimization through response surface methodology[J]. Polymer Testing, 2006, 25(3): 377
doi: 10.1016/j.polymertesting.2005.12.003
16 Reis A V, Fajardo A R, Schuquel I T A, et al. Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly (vinyl alcohol) and poly (acrylic acid): is this reaction mechanism still unclear[J]. The Journal of Organic Chemistry, 2009, 74(10): 3750
doi: 10.1021/jo900033c
17 Zheng X, Zhou Y F, Chen S Y, et al. Stimulus-responsive electrospun nanofibers[J]. Progress in Chemistry, 2018, 30(07): 958
17 郑 勰, 周一凡, 陈思远 等. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(07): 958
18 Zhang Q S, Zha L S, Ma J H, et al. Synthesis and characterization of a novel temperature sensitive microgels based on n-isopropylacrylamide and tert-butyl acrylate[J], J. Appl. Polym. Sci., 2007, 103(5): 2962
doi: 10.1002/(ISSN)1097-4628
19 Yu D G, Wang M, Li X, et al. Multifluidelectrospinning for the generation of complex nanostructures[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12(3): e1601
20 Chen G, Xu Y, Yu D G, et al. Structure-tunable Janus fibers fabricated using spinnerets with varying port angles[J]. Chemical Communications, 2015, 51(22): 4623
doi: 10.1039/C5CC00378D
21 Ulutürk C, Alemdar N. Electroconductive 3D polymericnetworkproduction by using polyanilinechitosan-based hydrogel[J]. Carbohydrate Polymers, 2018, 193: 307
doi: S0144-8617(18)30363-1 pmid: 29773386
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.