Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 820-826    DOI: 10.11901/1005.3093.2020.574
  研究论文 本期目录 | 过刊浏览 |
碳纳米纤维气凝胶的制备及其吸油性能
许文萃1,2, 林英正2, 邵再东2, 郑煜铭2, 程璇1(), 钟鹭斌2()
1.厦门大学材料学院 厦门 361005
2.中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室 厦门 361021
Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption
XU Wencui1,2, LIN Yingzheng2, SHAO Zaidong2, ZHENG Yuming2, CHENG Xuan1(), ZHONG Lubin2()
1.College of Materials, Xiamen University, Xiamen 361005, China
2.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
引用本文:

许文萃, 林英正, 邵再东, 郑煜铭, 程璇, 钟鹭斌. 碳纳米纤维气凝胶的制备及其吸油性能[J]. 材料研究学报, 2021, 35(11): 820-826.
Wencui XU, Yingzheng LIN, Zaidong SHAO, Yuming ZHENG, Xuan CHENG, Lubin ZHONG. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. Chinese Journal of Materials Research, 2021, 35(11): 820-826.

全文: PDF(9304 KB)   HTML
摘要: 

先用静电纺丝-液相接收技术制备蓬松的聚丙烯腈(PAN)三维纳米纤维,然后将其进行热稳定化处理得到超轻纳米纤维气凝胶(CNFAs)。CNFAs内部是碳纳米纤维交叠形成的开孔网络,发生80%应变后能回弹到原形。用聚二甲基硅氧烷(PDMS)气相沉积疏水化处理后,CNFAs的水接触角增大到145°。研究了静电纺丝纳米纤维的原始堆积密度对CNFAs的体积收缩率、密度、吸油容量以及循环吸附量的影响,结果表明:这种气凝胶的机械性能优异。纳米纤维合适的初始堆积密度为4 mg·mL-1,制备出的CNFAs对油类污染物的吸附量可达到自重的185倍;用燃烧和挤压方法10次循环回收吸附饱和的CNFAs,其吸附容量仍保持稳定。

关键词 材料表面与界面碳气凝胶静电纺丝吸油液相接收    
Abstract

The polyacrylonitrile (PAN) three-dimensional nanofibers were prepared by electrospinning and liquid phase receiving technique, and then the ultra-light carbon nanofiber aerogels (CNFAs) with excellent mechanical properties were obtained by post thermal stabilizing the nanofibers. There exists a network of open holes formed by overlapping carbon nanofibers inside the CNFAs, which can bounce back to its original shape after 80% strain. The water contact angle of CNFAs increased to 145o after hydrophobic treatment via vapor depositionof polydimethylsiloxane (PDMS). The effect of the original bulk density of electro-spun nanofibers on the volume shrinkage, density, oil absorption capacity and cyclic adsorption capacity of CNFAs was assessed. The results show that 4 mg·mL-1 is a more appropriate initial bulk density, and the adsorption capacity of CNFAs for oil pollutants can reach 185 times of its own weight. The CNFAs of saturated absorption could be recovered by direct combustion or extrusion, and even after 10 cycles of combustion recovery, the adsorption capacity of the recovered CNFAs could remain by a rather stable level.

Key wordssurface and interface in the materials    carbon aerogel    electrospinning    oil sorbent    liquid-assist collector
收稿日期: 2020-12-30     
ZTFLH:  X703.1  
基金资助:国家自然科学基金(51578525)
作者简介: 许文萃,男,1995年生,硕士生
图1  碳纳米纤维气凝胶的制备过程
图2  三维纳米纤维热稳定化处理前后的压缩回弹性
图3  初始密度和热处理温度不同的碳纳米纤维气凝胶应变为80%的应力应变曲线
图4  热处理温度不同的碳纳米纤维气凝胶的拉曼光谱
图5  三维纳米纤维碳化后的体积收缩率和密度
图6  碳纳米纤维气凝胶PDMS气相沉积前后的SEM照片
图7  碳纳米纤维气凝胶水接触角的测试
图8  碳纳米纤维气凝胶疏水化处理不同时间后水接触角的测试
图9  不同初始堆积密度CNFAs的吸油容量(以乙醇吸附量为例)
图10  CNFAs对不同油类污染物的吸附量(以4 mg·mL-1初始堆积密度CNFAs为例)
图11  碳纳米纤维气凝胶的燃烧回收
图12  碳纳米纤维气凝胶燃烧循环吸附性能
图13  碳纳米纤维气凝胶的压缩循环
图14  碳纳米纤维气凝胶的压缩循环吸附性能
1 Chen C H S, Yuan T H, Shie R H, et al. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants [J]. Environ Int, 2017, 102: 87
2 Li P Y, Fang Y J, Gao Y K, et al. Research progress on methods of removing oil pollutants from water [J]. Journal of Green Science and Technology, 2020, 18: 92
2 李珮瑜, 方英杰, 高益康等. 水体中浮油污染物去除 方法研究进展 [J]. 绿色科技, 2020, 18: 92
3 Wang Q Z, Qin Y, Xue C L, et al. Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption [J]. Chem. Eng. J, 2020, 402: 126240
4 Xie C, Xing J, Ding Y M, et al. Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning [J]. Journal of Materials Engineering, 2020, 48 (6): 125
4 谢超, 邢健, 丁玉梅等. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能 [J]. 材料工程, 2020, 48 (6): 125
5 Maleki H. Recent advances in aerogels for environmental remediation applications: A review [J]. Chem. Eng. J, 2016, 300: 98
6 Feng Y, Yao J. Design of melamine sponge-based three-dimensional porous materials towards applications [J]. Ind. Eng. Chem. Res, 2018, 57: 7322
7 Feng Y, Wang Y, Wang Y, et al. Furfuryl alcohol modified melamine sponge for high-efficient oil spill clean-up and recovery [J]. Journal of Materials Chemistry A, 2017, 5 (41): 21893
8 Du G Y, Zhu C W, Zeng W Q, et al. Preparation and oil absorption properties of graphene composite modified sponge [J]. Chinese Journal of Environmental Engineering, 2018, 12 (3): 741
8 杜国勇, 朱成旺, 曾文强等. 石墨烯复合改性海绵的制备及其吸油性能 [J]. 环境工程学报, 2018, 12 (3): 741
9 Kukkar D, Rani A, Kumar V, et al. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills [J]. J. Colloid Interface Sci, 2020, 570: 411
10 Zhuo L, Wang X T, Yang D Z, et al. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills [J]. J. Colloid Interface Sci, 2020, 570: 61
11 Li J H, Li J Y, Meng H, et al. Ultra-light compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids [J]. Journal of Material Chemistry A, 2014, 2 (9): 2934
12 Pethsangave D A, Wadekar P H, Khose R V, et al. Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures [J]. Polym Test, 2020, 90: 106743
13 Wu Z Y, Li C, Liang H W. Ultralight,flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose [J]. Angew Chem Int Edit, 2013, 52 (10): 2925
14 Li Y Z, Zhu L Q, Grishkewich N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation [J]. ACS Appl Mater Inter, 2019, 11 (9): 9367
15 Han S J, Sun Q F, Zheng H H, et al. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution [J]. Carbohydr Polym, 2016, 136: 95
16 Chen T, Li M X, Zhou L, et al. Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil-water separation [J]. ACS Sustain Chem Eng, 2020, 8(16): 6458
17 Liu Z, Wen M, Liu Y, et al. Preparation and properties of pyrolysis grapefruit peel oil absorbing materials [J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1818
17 刘钊, 文明, 刘洋等. 热解柚子皮吸油材料的制备及性能 [J]. 环境工程学报, 2016, 10 (4): 1818
18 Sun B, Long Y Z, Yu F, et al. Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning [J]. Nanoscale, 2012, 4 (6): 2134
19 Si Y, Yu J Y, Tang X M, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality [J]. Nat Commun, 2014, 5: 5802
20 Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber [J]. Polym Degrad Stabil, 2007, 92(8): 1421
21 Guo Z Y, Liu X C, Huang H D, et al. Graphitization control and NO catalytic performance of electrospinning PAN nanofibers [J]. Journal of Tiangong University, 2020, 39(4): 20
21 郭泽宇, 刘宣材, 黄贺东等. 电纺PAN纳米纤维的石墨化调控及对NO的催化性能 [J]. 天津工业大学学报, 2020, 39(4): 20
22 Yuan J K, Liu X G, Akbulut O, et al. Superwetting nanowire membranes for selective absorption [J]. Nat Nanotechnol, 2008, 3(6): 332
23 Sun H X, Li A, Zhu Z Q, et al. Superhydrophobic activated carbon-coated sponges for separation and absorption [J]. ChemSusChem, 2013, 6(6): 1057
24 Liu Q Z, Chen J H, Mei T, et al. A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications [J]. Journal of Material Chemistry A, 2018, 6(8): 3692
25 Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight,synergistically assembled carbon aerogels [J]. Adv. Mater, 2013, 25(18): 2554
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[5] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[6] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[7] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[8] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[10] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[12] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[13] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[14] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[15] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.