Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 415-422    DOI: 10.11901/1005.3093.2017.463
  研究论文 本期目录 | 过刊浏览 |
316LN不锈钢断裂过程的声发射特性
张进1, 柴孟瑜1, 项靖海1, 段权1(), 李丽婵2
1 西安交通大学化学工程与技术学院 西安 710049
2 国核工程有限公司 上海 200233
Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel
Jin ZHANG1, Mengyu CHAI1, Jinghai XIANG1, Quan DUAN1(), Lichan LI2
1 School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an 710049, China;
2 State Nuclear Power Engineering Company Limited, Shanghai 200233, China
引用本文:

张进, 柴孟瑜, 项靖海, 段权, 李丽婵. 316LN不锈钢断裂过程的声发射特性[J]. 材料研究学报, 2018, 32(6): 415-422.
Jin ZHANG, Mengyu CHAI, Jinghai XIANG, Quan DUAN, Lichan LI. Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel[J]. Chinese Journal of Materials Research, 2018, 32(6): 415-422.

全文: PDF(6430 KB)   HTML
摘要: 

用声发射技术监测316LN母材和焊缝的断裂过程得到了材料断裂破坏的声发射特征,并对声发射信号进行分类,研究了316LN不锈钢材料的断裂韧性。结果表明:316LN母材和焊缝的断裂是韧性断裂,母材的塑性优于焊缝;断裂过程在时域上可划分为5个阶段:裂尖张开阶段、弹性变形阶段、塑性变形阶段、裂纹萌生阶段以及裂纹稳定扩展阶段;使用上升时间-持续时间关联分析法可将母材和焊缝断裂过程的声发射信号进行分类,可区分出噪声信号和有效断裂信号。

关键词 材料失效与保护断裂韧性声发射技术316LN不锈钢关联分析    
Abstract

Fracture toughness tests of the matrix and weld joint of 316LN stainless steel (SS) were carried out, while the acoustic emission (AE) signals were monitored simultaneously during the fracture process in real time. Then the AE signals were classified. The results show that the fracture of the matrix of 316LN SS and the weld joint was ductile ones, and the plasticity of the matrix was better than that of the weld joint. The fracture process could be divided into five stages including the crack tip opening stage, the elastic deformation stage, the plastic deformation stage, the crack initiation stage and the stable crack propagation stage. Moreover, the correlation analyses of rise time and duration of the AE signals indicated that the fracture processes could be classified into several categories, which was available for distinguishing the noise signal and effective fracture signal within the AE signal spectrum.

Key wordsmaterials failure and protection    fracture toughness    acoustic emission technology    316LN stainless steel    association analysis
收稿日期: 2017-07-31     
ZTFLH:  TG115  
作者简介:

作者简介 张进,男,1993年生,硕士生

C N Cr Ni Mo Mn Si P S
0.023 0.16 16.43 11.33 2.25 1.45 0.46 0.024 0.001
表1  316LN不锈钢的化学成分
Backing weld Filling bead Cosmetic bead Welding speed
/mmmin-1
Current/A Voltage/V Current/A Voltage/V Current/A Voltage/V
115 24.6 130 25.2 130 25.2 150
表2  焊接工艺参数
图1  试样尺寸
图2  实验系统图
图3  母材和焊缝的显微组织
图4  母材(BM)和焊缝(WZ)试样加载过程的P-V曲线
图5  母材(BM)和焊缝(WZ)试样的拟合R曲线
图6  母材和焊缝试样的断口宏观图
图7  母材试样的断口扫描电镜照片
图8  焊缝试样断口扫描电镜照片
Element Fe Cr Ni Mo Mn Si
Base metal 67.97 17.75 9.01 2.21 1.81 1.21
Weld zone 65.73 20.53 8.87 2.04 1.83 0.97
表3  母材和焊缝断口元素质量分数
图9  焊缝和母材的载荷和电压随位移的变化
图10  焊缝和母材的累积计数和累积能量随时间的变化
图11  焊缝和母材的声发射信号幅值分布图
图12  声发射信号群的分布图
图13  焊缝和母材的上升时间-持续时间关联图
[1] Arii M, Kashiwaya H, Yanuki T.Slow crack growth and acoustic emission characteristics in COD test[J]. Eng. Fract. Mech., 1975, 7: 551
[2] Camerini C S, Rebello J M A, Soares S D. Relationship between acoustic emission and CTOD testing for a structural steel[J]. NDT E Int., 1992, 25: 127
[3] Blanchette Y, Dickson J I, Bassim M N.The use of acoustic emission to evaluate critical values of K and J in 7075-T651 aluminum alloy[J]. Eng. Fract. Mech., 1984, 20: 359
[4] Clark G, Knott J F.Acoustic emission and ductile crack growth in pressure-vessel steels[J]. Metal Sci., 1977, 11: 531
[5] Long X, Cai G J, Svensson L E.Investigation of fracture and determination of fracture toughness of modified 9Cr-1Mo steel weld metals using AE technique[J]. Mater. Sci. Eng., 1999, 270A: 260
[6] Roy H, Parida N, Sivaprasad S, et al.Acoustic emissions during fracture toughness tests of steels exhibiting varying ductility[J]. Mater. Sci. Eng., 2008, 486A: 562
[7] Mukhopadhyay C K, Sasikala G, Jayakumar T, et al.Acoustic emission during fracture toughness tests of SA333 Gr.6 steel[J]. Eng. Fract. Mech., 2012, 96: 294
[8] Chai M Y, Duan Q, Hou X L, et al.Fracture toughness evaluation of 316LN stainless steel and weld using acoustic emission technique[J]. ISIJ Int., 2016, 56: 875
[9] Sindi C T, Najafabadi M A, Ebrahimian S A.Fracture toughness determination of heat treated AISI D2 tool steel using AE technique[J]. ISIJ Int., 2011, 51: 305
[10] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. GB/T21143-2007 Metallic materials-Unified method of test for determination of quasistatic fracture toughness [S]. Beijing: Standards Press of China, 2008中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T21143-2007 金属材料准静态断裂韧度的统一试验方法 [S]. 北京: 中国标准出版社, 2008
[11] Ha K F.Physical Basis of Fracture [M]. Beijing: Science Press, 2000哈宽富. 断裂物理基础 [M]. 北京: 科学出版社, 2000
[12] Heiple C R, Carpenter S H.Acoustic emission produced by deformation of metals and alloys-a review[J]. J. Acoust. Emiss., 1987, 6: 177
[13] Ennaceur C, Laksimi A, Hervé C, et al.Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. Int. J. Press. Vessels Piping, 2006, 83: 197
[14] Li D S, Ou J P.Monitoring damage of arch bridge suspender using acoustic emission technique[J]. J. Shenyang Jianzhu Univ.(Nat. Sci.), 2007, 23: 6李冬生, 欧进萍. 声发射技术在拱桥吊杆损伤监测中的应用[J]. 沈阳建筑大学学报(自然科学版), 2007, 23: 6
[15] Lu C P, Dou L M.Damage and monitoring with acoustic emission and electromagnetic emission of rocks around the tunnel[J]. J. China Coal Soc., 2004, 29: 41陆菜平, 窦林名. 隧道围岩的损伤与声电监测[J]. 煤炭学报, 2004, 29: 41
[16] Dou L M, He X Q.Monitoring the rock activity around a tunnel with AE[J]. Appl. Acoust., 2002, 21(5): 25窦林名, 何学秋. 声发射监测隧道围岩活动性[J]. 应用声学, 2002, 21(5): 25
[1] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 刘明, 伍家楠. 圆锥压头递增载荷对材料的划痕行为[J]. 材料研究学报, 2022, 36(3): 191-205.
[6] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[9] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.