Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 409-414    DOI: 10.11901/1005.3093.2018.157
  研究论文 本期目录 | 过刊浏览 |
多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池
王强, 郝瑞亭(), 赵其琛, 刘思佳
云南师范大学能源与环境科学学院 昆明 650500
Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets
Qiang WANG, Ruiting HAO(), Qichen ZHAO, Sijia LIU
College of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
引用本文:

王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. Chinese Journal of Materials Research, 2018, 32(6): 409-414.

全文: PDF(3293 KB)   HTML
摘要: 

按照ZnS/CuS/SnS/CuS的顺序分层溅射硫化锌、硫化铜和硫化亚锡三个二元硫化物靶,制备铜锌锡硫(CZTS)的预制层。在预制层总厚度不变的情况下按照上述顺序将预制层分多个周期溅射,然后在360℃对含硫预制层进行低温退火,再在硫气氛中进行高温(600℃)硫化处理,制备出CZTS薄膜。周期数为3的CZTS薄膜表面平整致密、晶粒大小均匀,禁带宽度为1.50 eV。用这种薄膜制备的CZTS薄膜太阳电池性能最好,其开路电压(Voc)为623 mV,短路电流密度(Jsc)为11.79 mA/cm2,光电转换效率达到2.93%。

关键词 材料合成与加工工艺分周期溅射铜锌锡硫高温硫化    
Abstract

Layered films of Cu2ZnSnS4 (CZTS) thin films were prepared by sequentially and cyclically sputtering three targets of ZnS, CuS and SnS, which then were annealing at 360℃ for 30 min, afterwards they were sulfurized in a graphite box with 0.5 g sulfur powder at 600℃ for desired period of time. For three cycles of sputtering (T3), the prepared CZTS thin layered film is dense and compact with smooth surface, uniform crystal-grain size and a band gap of 1.5 eV. The solar cell assembled by the T3 ZTS film has better performance with the following parameters: the open circuit voltage 623 mV and the short-circuit current density 11.79 mA/cm2, respectively. Correspondingly, the photoelectric conversion efficiency could reach 2.93%.

Key wordssynthesizing and processing technics for materials    periodic sputtering    CZTS    high temperature sulfurization
收稿日期: 2018-02-06     
ZTFLH:  TM615  
基金资助:国家自然科学基金(61774130,11474248,61176127,61006085),国际科技合作重点项目(2011DFA62380),教育部博士点基金(20105303120002)
作者简介:

作者简介 王强,男,1963年生,高级实验师

Stacking sequence Atomic component/% Atomic ratio
Cu Zn Sn S Cu/(Zn+Sn) Zn/Sn S/(Cu+Zn+Sn)
T1 21.28 14.65 12.85 51.22 0.77 1.14 1.05
T2 20.89 14.01 12.31 52.78 0.79 1.14 1.06
T3 22.01 13.43 12.10 52.47 0.86 1.11 1.10
表1  基于 substrate/ZnS/CuS/SnS/CuS周期顺序制备得到薄膜样品的EDS测试结果
图1  周期为T1、T2和T3的薄膜样品的XRD衍射图谱
Periodicity 2θ/(°) FWHM/(°) D/nm
T1 28.481 0.335 0.31313
T2 28.460 0.335 0.31336
T3 28.460 0.332 0.31336
表2  周期为T1、T2和T3的CZTS样品的(112)晶面的结构参数
图2  周期为T1、T2和T3的薄膜样品的Raman散射谱
图3  周期为T1、T2和T3的薄膜样品的表面SEM照片
图4  周期为T1、T2和T3的CZTS薄膜的SEM截面图
图5  周期为T1、T2和T3的CZTS薄膜的(αhν)2与(hν)的关系图
图6  CZTS薄膜太阳电池样品在标准光照下的J-V特性曲线
[1] Tablero C.Effect of the oxygen isoelectronic substitution in Cu2ZnSnS4 and its photovoltaic application[J]. Thin Solid Films, 2012, 520: 5011
[2] Xie M, Zhuang D M, Liu J, et al.The influence of sulfurization temperature on the properties of Cu2ZnSnS4 thin film[J]. Chin. J. Mater. Res., 2013, 27: 126谢敏, 庄大明, 刘江等. 硫化温度对铜锌锡硫薄膜特性的影响[J]. 材料研究学报, 2013, 27: 126
[3] Nakayama N, Ito K.Sprayed films of stannite Cu2ZnSnS4[J]. Appl. Surf. Sci., 1996, 92: 171
[4] Green M A, Emery K, Hishikawa Y, et al.Solar cell efficiency tables (version 39)[J]. Prog. Photovolt. Res. Appl., 2012, 20: 12
[5] Katagiri H, Jimbo K, Yamada S, et al.Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl. Phys. Express, 2008, 1: 041201
[6] Shin B, Gunawan O, Zhu Y, et al.Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog. Photovolt. Res. Appl., 2013, 21: 72
[7] Lee Y S, Gershon T, Gunawan O, et al.Cu2ZnSnSe4 thin-film solar cells by thermal Co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Adv. Energy Mater., 2015, 5: 1401372
[8] Liu H, Xue Y M, Qiao Z X, et al.Progress of application research on Cu2ZnSnS4 thin film and its device[J]. Acta Phys. Sin., 2015, 64: 068801刘浩, 薛玉明, 乔在祥等. 铜锌锡硫薄膜材料及其器件应用研究进展[J]. 物理学报, 2015, 64: 068801
[9] Wang W, Winkler M T, Gunawan O, et al.Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv. Energy Mater., 2014, 4: 132
[10] Salomé P M P, Malaquias J, Fernandes P A, et al. The influence of hydrogen in the incorporation of Zn during the growth of Cu2ZnSnS4 thin films[J]. Solar Energy Mater. Solar Cells, 2011, 95: 3482
[11] Weber A, Mainz R, Schock H W.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. J. Appl. Phys., 2010, 107: 013516
[12] Scragg J J, Ericson T, Kubart T, et al.Chemical insights into the instability of Cu2ZnSnS4 films during annealing[J]. Chem. Mater., 2011, 23: 4625
[13] Katagiri H, Jimbo K, Tahara M, et al.The influence of the composition ratio on CZTS-based thin film solar cells [A]. Materials Research Society Symposia Proceedings[C]. Materials Research Society, 2009: 116
[14] Liu F Y, Yi L, Zhang K, et al.In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Solar Energy Mater. Solar Cells, 2010, 94: 2431
[15] Luckert F, Hamilton D I, Yakushev M V, et al.Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Appl. Phys. Lett., 2011, 99: 2250
[16] Fairbrother A, Fontané X, Izquierdo-Roca V, et al.On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks[J]. Solar Energy Mater. Solar Cells, 2013, 112: 97
[17] Scragg J J, Ericson T, Fontané X, et al.Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells[J]. Prog. Photovolt. Res. Appl., 2014, 22: 10
[18] Kim S, Oh M, Kim W K.Effect of Sn-layer addition to precursors on characteristics of Cu2ZnSn(S,Se)4 thin-film solar cell absorber[J]. Thin Solid Films, 2013, 549: 59
[19] He J, Sun L, Zhang K Z, et al.Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target[J]. Appl. Surf. Sci., 2013, 264: 133
[20] Amal M I, Kim K H.Crystallization of kesterite Cu2ZnSnS4 prepared by the sulfurization of sputtered Cu-Zn-Sn precursors[J]. Thin Solid Films, 2013, 534: 144
[21] Marchionna S, Garattini P, Le Donne A, et al.Cu2ZnSnS4 solar cells grown by sulphurisation of sputtered metal precursors[J]. Thin Solid Films, 2013, 542: 114
[22] Momose N, Htay M T, Yudasaka T, et al. Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets [J]. Jpn. J. Appl. Phys., 2011, 50: 01BG09
[23] Leit?o J P, Santos N M, Fernandes P A, et al.Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films, 2011, 519: 7390
[24] Ericson T, Scragg J J, Kubart T, et al.Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells[J]. Thin Solid Films, 2013, 535: 22
[25] Brammertz G, Ren Y, Buffière M, et al.Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers[J]. Thin Solid Films, 2013, 535: 348
[26] Chang W H, Shin S W, Gurav K V, et al.Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells[J]. Appl. Surf. Sci., 2015, 334: 180
[27] Pawar S M, Inamdar A I, Gurav K V, et al.Growth of void free Cu2ZnSnS4 (CZTS) thin films by sulfurization of stacked metallic precursor films[J]. Vacuum, 2014, 104: 57
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[4] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[6] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] 刘正华, 王兢, 杜海英, 王惠生, 李晓干, 王小风. 基于联合仿真方法研究静电纺丝轨迹[J]. 材料研究学报, 2018, 32(2): 127-135.
[12] 李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
[13] 李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
[14] 唐昭辉, 丁学勇, 董越, 刘程宏, 魏国. w(MgO)对高钛高炉渣黏流特性的影响*[J]. 材料研究学报, 2016, 30(6): 443-447.
[15] 唐闲逸, 魏晓慧, 许德平, 张海永, 贺欣, 熊楚安, 唐瀚滢. 中温煤沥青喹啉不溶物的脱除及炭化制备针状焦*[J]. 材料研究学报, 2016, 30(6): 448-456.