|
|
多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池 |
王强, 郝瑞亭( ), 赵其琛, 刘思佳 |
云南师范大学能源与环境科学学院 昆明 650500 |
|
Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets |
Qiang WANG, Ruiting HAO( ), Qichen ZHAO, Sijia LIU |
College of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China |
引用本文:
王强, 郝瑞亭, 赵其琛, 刘思佳. 多周期分层溅射硫化物靶制备铜锌锡硫薄膜太阳电池[J]. 材料研究学报, 2018, 32(6): 409-414.
Qiang WANG,
Ruiting HAO,
Qichen ZHAO,
Sijia LIU.
Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. Chinese Journal of Materials Research, 2018, 32(6): 409-414.
[1] | Tablero C.Effect of the oxygen isoelectronic substitution in Cu2ZnSnS4 and its photovoltaic application[J]. Thin Solid Films, 2012, 520: 5011 | [2] | Xie M, Zhuang D M, Liu J, et al.The influence of sulfurization temperature on the properties of Cu2ZnSnS4 thin film[J]. Chin. J. Mater. Res., 2013, 27: 126谢敏, 庄大明, 刘江等. 硫化温度对铜锌锡硫薄膜特性的影响[J]. 材料研究学报, 2013, 27: 126 | [3] | Nakayama N, Ito K.Sprayed films of stannite Cu2ZnSnS4[J]. Appl. Surf. Sci., 1996, 92: 171 | [4] | Green M A, Emery K, Hishikawa Y, et al.Solar cell efficiency tables (version 39)[J]. Prog. Photovolt. Res. Appl., 2012, 20: 12 | [5] | Katagiri H, Jimbo K, Yamada S, et al.Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl. Phys. Express, 2008, 1: 041201 | [6] | Shin B, Gunawan O, Zhu Y, et al.Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog. Photovolt. Res. Appl., 2013, 21: 72 | [7] | Lee Y S, Gershon T, Gunawan O, et al.Cu2ZnSnSe4 thin-film solar cells by thermal Co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Adv. Energy Mater., 2015, 5: 1401372 | [8] | Liu H, Xue Y M, Qiao Z X, et al.Progress of application research on Cu2ZnSnS4 thin film and its device[J]. Acta Phys. Sin., 2015, 64: 068801刘浩, 薛玉明, 乔在祥等. 铜锌锡硫薄膜材料及其器件应用研究进展[J]. 物理学报, 2015, 64: 068801 | [9] | Wang W, Winkler M T, Gunawan O, et al.Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv. Energy Mater., 2014, 4: 132 | [10] | Salomé P M P, Malaquias J, Fernandes P A, et al. The influence of hydrogen in the incorporation of Zn during the growth of Cu2ZnSnS4 thin films[J]. Solar Energy Mater. Solar Cells, 2011, 95: 3482 | [11] | Weber A, Mainz R, Schock H W.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. J. Appl. Phys., 2010, 107: 013516 | [12] | Scragg J J, Ericson T, Kubart T, et al.Chemical insights into the instability of Cu2ZnSnS4 films during annealing[J]. Chem. Mater., 2011, 23: 4625 | [13] | Katagiri H, Jimbo K, Tahara M, et al.The influence of the composition ratio on CZTS-based thin film solar cells [A]. Materials Research Society Symposia Proceedings[C]. Materials Research Society, 2009: 116 | [14] | Liu F Y, Yi L, Zhang K, et al.In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Solar Energy Mater. Solar Cells, 2010, 94: 2431 | [15] | Luckert F, Hamilton D I, Yakushev M V, et al.Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Appl. Phys. Lett., 2011, 99: 2250 | [16] | Fairbrother A, Fontané X, Izquierdo-Roca V, et al.On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks[J]. Solar Energy Mater. Solar Cells, 2013, 112: 97 | [17] | Scragg J J, Ericson T, Fontané X, et al.Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells[J]. Prog. Photovolt. Res. Appl., 2014, 22: 10 | [18] | Kim S, Oh M, Kim W K.Effect of Sn-layer addition to precursors on characteristics of Cu2ZnSn(S,Se)4 thin-film solar cell absorber[J]. Thin Solid Films, 2013, 549: 59 | [19] | He J, Sun L, Zhang K Z, et al.Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target[J]. Appl. Surf. Sci., 2013, 264: 133 | [20] | Amal M I, Kim K H.Crystallization of kesterite Cu2ZnSnS4 prepared by the sulfurization of sputtered Cu-Zn-Sn precursors[J]. Thin Solid Films, 2013, 534: 144 | [21] | Marchionna S, Garattini P, Le Donne A, et al.Cu2ZnSnS4 solar cells grown by sulphurisation of sputtered metal precursors[J]. Thin Solid Films, 2013, 542: 114 | [22] | Momose N, Htay M T, Yudasaka T, et al. Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets [J]. Jpn. J. Appl. Phys., 2011, 50: 01BG09 | [23] | Leit?o J P, Santos N M, Fernandes P A, et al.Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films, 2011, 519: 7390 | [24] | Ericson T, Scragg J J, Kubart T, et al.Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells[J]. Thin Solid Films, 2013, 535: 22 | [25] | Brammertz G, Ren Y, Buffière M, et al.Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers[J]. Thin Solid Films, 2013, 535: 348 | [26] | Chang W H, Shin S W, Gurav K V, et al.Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells[J]. Appl. Surf. Sci., 2015, 334: 180 | [27] | Pawar S M, Inamdar A I, Gurav K V, et al.Growth of void free Cu2ZnSnS4 (CZTS) thin films by sulfurization of stacked metallic precursor films[J]. Vacuum, 2014, 104: 57 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|