Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 191-205    DOI: 10.11901/1005.3093.2021.219
  研究论文 本期目录 | 过刊浏览 |
圆锥压头递增载荷对材料的划痕行为
刘明(), 伍家楠
福州大学机械工程及自动化学院 福州 350116
Scratch Behavior of Materials under Progressive Load by Conical Indenter
LIU Ming(), WU Jianan
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
引用本文:

刘明, 伍家楠. 圆锥压头递增载荷对材料的划痕行为[J]. 材料研究学报, 2022, 36(3): 191-205.
Ming LIU, Jianan WU. Scratch Behavior of Materials under Progressive Load by Conical Indenter[J]. Chinese Journal of Materials Research, 2022, 36(3): 191-205.

全文: PDF(10341 KB)   HTML
摘要: 

用Rockwell C金刚石压头对16种材料(2种玻璃、2种聚合物、4种陶瓷、4种金属和4种金属玻璃)进行微米划痕测试。结果表明,这些材料都存在与弹性恢复相关的最大划痕保持率(残余深度与压入深度之比),可作为表观摩擦系数变化曲线的分段过渡点。划痕的表观摩擦系数由黏着摩擦系数和犁沟摩擦系数组成,使用三维力学接触模型可较为准确地表征除金属玻璃外的摩擦系数。材料的初始摩擦系数与泊松比有一定的关系。聚合物(PC和PMMA)因堆积和下沉效应出现独有的双划痕沟槽现象。16种材料的划痕硬度与压痕硬度的比值为0.33~2.5,划痕硬度与体积模量呈线性关系。使用线弹性断裂力学(LEFM)模型和微观能量尺寸效应(MESEL)模型计算了材料的断裂韧性。结果表明,LEFM模型、Akono's MESEL和Hubler's MESEL模型都能较为准确地表征断裂韧性较低材料(玻璃、陶瓷和高分子)的断裂韧性,而对断裂韧性较大的金属材料其表征结果偏差较大。用Liu's MESEL模型可表征断裂韧性较大材料(金属材料和部分金属玻璃)的断裂韧性。材料的断裂韧性,与泊松比呈分段线性相关。

关键词 材料检测与分析技术微米划痕Rockwell C压头递增载荷弹塑性变形断裂韧性    
Abstract

The scratch characteristics in micron scale on 16 kinds of materials (2 kinds of glasses, 2 kinds of polymers, 4 kinds of ceramics, 4 kinds of metals and 4 kinds of metallic glasses) were assessed by means of Rockwell C diamond indentation with progressive load. The results show that these materials all have the maximum scratch retention rate (the ratio of residual indentation depth to indentation depth) related to elastic recovery, which can be used as the transition point of the apparent friction coefficient curve. The apparent friction coefficient of scratches is composed of adhesive friction coefficient and furrow friction coefficient. The three-dimensional mechanical contact model can be used to accurately characterize the friction coefficient except for metallic glass. The initial friction coefficient of the material is related to the Poisson's ratio. Polymeric materials (PC and PMMA) have special double scratch grooves due to stacking and sinking effects. The ratio of the hardness of scratched materials to the indentation hardness for 16 kinds of materials is 0.33~2.5, and there is a linear relationship between the scratch hardness and the volume modulus. The linear elastic fracture mechanics (LEFM) model and microscopic energy size effect (MESEL) model were used to calculate the fracture toughness of the material. The results show that: LEFM model, Akono's MESEL model and Hubler's MESEL model can accurately characterize the fracture toughness of materials with low fracture toughness (glasses, ceramics and polymers), while the deviation of calculation results for metal materials with high fracture toughness is large. Liu's MESEL model can be used to characterize the fracture toughness of materials with large fracture toughness (metallic materials and some metallic glasses). The fracture toughness of the material has a piecewise linear correlation with Poisson's ratio.

Key wordsmeasuring and analysis for materials    micro-scratch    Rockwell C indenter    progressive load    elastic-plastic deformation    fracture toughness
收稿日期: 2021-04-06     
ZTFLH:  TB302.5  
基金资助:国家自然科学基金(51705082);晋江市福大科教园区发展中心科研项目(2019-JJFDKY-11)
作者简介: 刘明,男,1985年生,教授
图1  划痕主视图、划痕侧视图、压头形状以及划痕沟槽中的堆积和下沉示意图
Materialsl/mmFmax/Nv/mm·min-1P/g
PMMA5201010
PC220210
Fused silica35650
S-L glass5101050
AZ312304200
Cu5255200
Si3N45510500
Al2O32104500
Si264500
SiC2104500
Mo4304500
W3303500
BMG-12204500
BMG-22204500
BMG-32204500
BMG-42204500
表1  试样的划痕实验参数(划痕长度l,划痕最大载荷Fmax,划痕速度v,努氏压痕载荷P)
Materialsμ0μavgμcalHs/GPaK/GPaHi/GPav
PMMA0.090.390.520.265.93[46]0.260.33[46]
PC0.160.630.630.115.3[47]0.140.3[48]
Fused silica0.0480.060.085.5337.7[39]6.730.16[49]
S-L glass0.0570.080.096.1944.4[39]5.440.2[50]
Si3N40.0420.0580.0722.5239.9[51]13.60.25[52]
Al2O30.0450.0750.0722.9219[53]14.160.24[54]
Si0.0350.0370.041699[55]8.050.3[56]
SiC0.0450.080.071.78220[57]21.050.22[58]
AZ310.180.540.660.5134.9[59]0.70.35[60]
Mo0.0450.440.451.98NA2.77NA
W0.040.450.443.06NA4.83NA
Cu0.20.780.690.52NA1.520.343
BMG-10.090.260.525.1148.3[43]2.250.32[43]
BMG-20.120.430.575.247[43]2.260.314[43]
BMG-30.1240.350.573.3547.6[43]2.220.317[43]
BMG-40.160.3280.63353.1[43]2.330.328[43]
表2  材料的摩擦系数和弹塑性性能
图2  压入深度d、残余深度dr和划痕保持率r=dr/d随载荷Fn的变化
图3  最大划痕保持率rmax与体积模量和压痕硬度比值(K/Hi)之间的关系
图4  切向力Ft和表观摩擦系数μapp随载荷Fn的变化
图5  泊松比v与初始摩擦系数μ0之间的关系
图6  脆性指数Hi/Kc与泊松比v之间的关系
MaterialsEq.(7)Eq.(10)Eq.(12)Eq.(13)SENB/CNB/IF method
PMMA1.421.391.072.161.5[61]
PC2.12.872.76.62.2[17]
Fused silica0.780.760.731.260.8[17]
S-L glass1.051.091.091.90.75[62]
Si3N41.371.321.322.31.26[40]
Al2O32.672.592.595.662.346[41]
Si1.181.21.22.081.28[42]
SiC2.862.912.926.22.8[63]
Cu8.68.328.2915.249.4[64]
BMG-353.453.055.335.6[43]
BMG-2744.117.34.2[43]
BMG-48.66.86.6811.976.5[43]
Mo11812.324.124.2[65]
W10.215.755.912.8814[66]
AZ313.7954.821415.9[44]
BMG-15.645.645.629.38.2[43]
表3  使用不同公式计算的断裂韧性
图7  划痕沟槽的光学照片
图8  根据划痕理论计算的宽度wt、实际测量宽度wi和宽度保持率wi/wt与压入深度d的关系
图9  聚合物的内划痕宽度wp和外划痕宽度wi与压入载荷Fn的关系
图10  划痕硬度Hs与压入载荷Fn之间的关系
图11  划痕硬度Hs与压痕硬度Hi之间的关系
图12  划痕硬度Hs与体积模量K之间的关系
图13  基于LEFM模型Eq.(7)对断裂韧性的分析
图14  基于Akono's MESEL模型Eq.(10)对断裂韧性的分析
图15  基于Hubler’s MESEL模型Eq.(12)对断裂韧性的分析
图16  基于Liu’s MESEL模型Eq.(13)对断裂韧性的分析
图17  断裂韧性Kc与泊松比v之间的关系
1 Sawamura S, Limbach R, Behrens H, et al. Lateral deformation and defect resistance of compacted silica glass: quantification of the scratching hardness of brittle glasses [J]. J. Non-Cryst. Solids, 2018, 481: 503
2 Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique [J]. Intermetallics, 2004, 12: 741
3 Liu M, Yang S, Gao C. Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading [J]. Polym. Test, 2020, 90: 106643
4 Funkenbusch P D, Carreon A H. Material specific nanoscratch ploughing friction coefficient [J]. Tribol. Int., 2018, 126: 363
5 Akono A-T, Randall N X, Ulm F-J. Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals [J]. J. Mater. Res., 2012, 27: 485
6 Hubler M H, Ulm F-J. Size-effect law for scratch tests of axisymmetric shape [J]. J. Eng. Mech., 2016, 142: 04016094
7 Akono A-T. Energetic size effect law at the microscopic scale: application to progressive-load scratch testing [J]. J. Nanom. Microm, 2016, 6: 04016001
8 Ghasemi R, Elmquist L, Ghassemali E, et al. Abrasion resistance of lamellar graphite iron: interaction between microstructure and abrasive particles [J]. Tribol. Int., 2018, 120: 465
9 Zakiev I, Gogotsi G A, Storchak M, et al. Glass fracture during micro-scratching [J]. Surfaces, 2020, 3: 211
10 Dong Z, Yuan S, Chenghui G, et al. Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter [J]. Wear, 2020, 444-445: 203158
11 Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62: 10
12 Guo H, Jiang C B, Yang B J, et al. On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation [J]. J. Non-Cryst. Solids, 2018, 481: 321
13 Chenghui G, Dongyang H, Ming L. Characterization of fracture toughness of semiconductor materials by dimensional and glass indenters [J]. Chin. J. Theor. Appl. Mech., 2021, 53: 413
13 高诚辉, 侯冬杨, 刘明. 利用维式和玻式压头表征半导体材料断裂韧性 [J]. 力学学报, 2021, 53: 413
14 Sebastiani M, Johanns K E, Herbert E G, et al. Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 324
15 Qiqiang D, Bin W, Peng Z, et al. Evaluation method of fracture toughness KIC of high strength steel with small size specimen [J]. Chin. J. Mater. Res., 2018, 32: 561
15 段启强, 王 斌, 张 鹏 等. 高强钢断裂韧性KIC的小尺寸试样评价方法 [J]. 材料研究学报, 2018, 32: 561
16 Lin J S, Zhou Y. Can scratch tests give fracture toughness? [J]. Eng. Fract. Mech., 2013, 109: 161
17 Ming L, Shuo L, Chenghui G. Testing fracture toughness of materials by micro-scratch of conical indenter [J]. Tribology, 2019, 39: 556
17 刘 明, 李 烁, 高诚辉. 利用圆锥压头微米划痕测试材料断裂韧性 [J]. 摩擦学学报, 2019, 39: 556
18 Ming L, Shuo L, Chenghui G. Study on failure mechanism of TiN coating by micro-scratch [J]. Acta Metrol Sin., 2020, 41: 696
18 刘 明, 李 烁, 高诚辉. 利用微米划痕研究TiN涂层的失效机理 [J]. 计量学报, 2020, 41: 696
19 Liu M, Zheng Q, Gao C. Sliding of a diamond sphere on fused silica under ramping load [J]. Mater. Today Commun., 2020, 25: 101684
20 Ming L, Shenghan Y, Chenghui G. Visual measurement of scratch shape surface based on level set method [J]. Chin. J. Sci. Instrum., 2020, 41: 184
20 刘 明, 杨胜寒, 高诚辉. 基于水平集方法的划痕形状表面视觉测量 [J]. 仪器仪表学报, 2020, 41: 184
21 Ming L, Qiang Z, Chenghui G. Characterization of mechanical properties of bulk metallic glass based on Knoop hardness [J]. Chin. J. Solid Mech., 2021, 1
21 刘 明, 郑 强, 高诚辉. 基于努氏硬度表征大块金属玻璃的力学性能 [J]. 固体力学学报, 2021, 1
22 Guangsheng S, Qiangqiang C, Yong X, et al. Mechanical properties and twinning mechanism of AZ31 magnesium alloy under variable path compression [J]. Chin. J. Nonferrous Met., 2016, 26: 1869
22 宋广胜, 陈强强, 徐 勇 等. AZ31镁合金变路径压缩的力学性能和孪晶机制 [J]. 中国有色金属学报, 2016, 26: 1869
23 Liu H, Zhao M, Lu C, et al. Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests [J]. Ceram. Int., 2020, 46: 6060
24 Feng B, Chen Z. Tribology behavior during indentation and scratch of thin films on substrates: effects of plastic friction [J]. Aip Adv., 2015, 5: 583
25 Lafaye S, Gauthier C, Schirrer R. A surface flow line model of a scratching tip: apparent and true local friction coefficients [J]. Tribol. Int., 2004, 38: 113
26 Ming L, Fuwen Y, Chenghui G. Effect of normal load on micro-scratch test of red copper [J]. Acta Metrol Sin., 2020, 41: 1095
26 刘 明, 严富文, 高诚辉. 法向载荷对紫铜的微米划痕测试的影响 [J]. 计量学报, 2020, 41: 1095
27 Jiang C, Jiang H, Zhang J, et al. Analytical model of friction behavior during polymer scratching with conical tip [J]. Friction, 2019, 7: 466
28 Liao Z, Hua N, Chen W, et al. Correlations between the wear resistance and properties of bulk metallic glasses [J]. Intermetallics, 2018, 93: 290
29 Wei H W. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
30 Hill A J, Agrawal C M. Positron lifetime spectroscopy characterization of thermal history effects on polycarbonate [J]. J. Mater. Sci., 1990, 25: 5036
31 Bauwens-Crowet C, Bauwens J C. The mechanism of creep behaviour in glassy polymers [J]. J. Mater. Sci., 1975, 10: 1779
32 Houérou V L, Sangleboeuf J C, Dériano S, et al. Surface damage of soda-lime-silica glasses: indentation scratch behavior [J]. J. Non-Cryst. Solids, 2003, 316: 54
33 Jiang H, Lim G T, Reddy J N, et al. Finite element method parametric study on scratch behavior of polymers [J]. J. Polym. Sci. Part B: Polym Phys, 2010, 45: 1435
34 Shigeki S, Lothar W. Scratch hardness of glass [J]. Phys. Rev. Mater., 2018, 2: 92601
35 Jiangbo S, Shigeki S, Lothar W. Scratch hardness of rare-earth substituted calcium aluminosilicate glasses [J]. J. Non-Cryst. Solids: X, 2019, 1: 100010
36 Zhu R, Li Y, Zhang X, et al. Strain-rate sensitivity of scratch hardness and deformation mechanism in nanocrystalline Ni under micro-scratch testing [J]. J. Mater. Sci., 2016, 51: 5889
37 Sinha S K, Lim D B J. Effects of normal load on single-pass scratching of polymer surfaces [J]. Wear, 2006, 260: 751
38 Briscoe B J, Evans P D, Biswas S K, et al. The hardnesses of poly(methylmethacrylate) [J]. Tribol. Int., 1996, 29: 93
39 Sawamura S, Limbach R, Wilhelmy S, et al. Scratch‐induced yielding and ductile fracture in silicate glasses probed by nanoindentation [J]. J. Am. Ceram. Soc., 2019, 102: 7299
40 Meng C, Haiyun J, Xide P, et al. A new method for evaluating fracture toughness of porous Si3N4 ceramics -- uniaxial compression test [J]. Rare Met. Mater. Eng., 2017, 46: 2883
40 陈 猛, 金海云, 潘希德 等. 评价多孔Si3N4陶瓷断裂韧性的新方法——单向压缩试验 [J]. 稀有金属材料与工程, 2017, 46: 2883
41 Youfu W, Tiancun S, Ju H. Fracture properties of single crystal and polycrystalline alumina ceramics and ceramic matrix composites [J]. J. Compos. Mater., 1993, 10: 93
41 王幼复, 三田村, 好 矩. 单晶与多晶氧化铝陶瓷材料断裂性能与陶瓷基复合材料 [J]. 复合材料学报, 1993, 10: 93
42 Shigeki, Nakao, Taeko, et al. Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode [J]. J. Nanom. Microm, 2008, 18: 015026
43 Wang S G, Shi L L, Xu J. Mg-based bulk metallic glasses: elastic properties and their correlations with toughness and glass transition temperature [J]. J. Mater. Res., 2011, 26: 923
44 Somekawa H, Mukai T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J]. Scr. Mater., 2005, 53: 541
45 Cao J, Li F. Critical Poisson's ratio between toughness and brittleness [J]. Philos. Mag. Lett., 2016, 96: 1
46 Weishaupt K, Krbecek H, Pietralla M, et al. Pressure dependence of the elastic constants of poly(methyl methacrylate) [J]. Polymer, 1995, 36: 3267
47 Weishaupt K, Pietralla M. The elastic behaviour of polycarbonate in the glassy state determined by Brillouin scattering [J]. J. Mater. Sci., 1995, 30: 5457
48 Fang T H, Chang W J. Nanoindentation characteristics on polycarbonate polymer film [J]. Microelectron. J., 2004, 35: 595
49 Zheng L, Schmid A W, Lambropoulos J C. Surface effects on Young's modulus and hardness of fused silica by nanoindentation study [J]. J. Mater. Sci., 2007, 42: 191
50 Yan Q, Yiwang B, Xiaogen L, et al. Effect of tempering on elastic properties of soda lime silica glass [J]. Rare Met. Mater. Eng., 2009, 38: 1133
50 邱 岩, 包亦望, 刘小根 等. 钢化对钠钙硅玻璃弹性性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 1133
51 Yu B H, Chen D, Jia Y L. Pseudo-potential calculations of structural, elastic and thermal properties of Si3N4 [J]. Adv. Mater. Res., 2011, 217: 1619
52 Yue J, Li G. Microstructure and mechanical properties of TiAlN/Si3N4 nano-multilayers synthesized by reactive magnetron sputtering [J]. J. Alloys Compd., 2009, 481: 710
53 Gutiérrez G, Taga A, Johansson B. Theoretical structure determination of γ-Al2O3 [J]. Phys. Rev. B, 2001, 65: 012101
54 Liu X, Haimi E, Hannula S P, et al. On the reliability of nanoindentation hardness of Al2O3 films grown on Si-wafer by atomic layer deposition [J]. J. Vac Sci. Technol. A, 2014, 32: 01A116
55 Madelung O, Rössler U, Schulz M. Silicon (Si) Young's modulus, torsion modulus, bulk modulus (various structures) [M]. Berlin: Springer-Verlag, 2001
56 Mishra P, Bhattacharyya S R, Ghose D. Nanoindentation on single-crystal Si modified by 100 keV Cr+ implantation [J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, 266: 1629
57 Zhang X D, Cui S X, Shi H F. Theoretical study of thermodynamics properties and bulk modulus of SiC under high pressure and temperature [J]. Chin.phys.lett, 2014, 31: 127
58 Evans A G, Charles E A. Fracture toughness determinations by indentation [J]. J. Am. Ceram. Soc., 1976, 59: 371
59 Janovská M, Minárik P, Sedlák P, et al. Elasticity and internal friction of magnesium alloys at room and elevated temperatures [J]. J. Mater. Sci., 2018, 53: 8545
60 Kun Y, Xiaoyan W, Zhiyong C, et al. Finite element simulation of hot rolling blooming deformation behavior of AZ31 magnesium alloy [J]. J. Cent. S. Un. (Sci. Technol.), 2009, 40: 1535
60 余 琨, 王晓艳, 蔡志勇 等. AZ31镁合金热轧开坯变形行为的有限元模拟 [J]. 中南大学学报(自然科学版), 2009, 40: 1535
61 Johnson J A, Jones D W. The mechanical properties of PMMA and its copolymers with ethyl methacrylate and butyl methacrylate [J]. J. Mater. Sci., 1994, 29: 870
62 Gong J, Chen Y, Li C. Statistical analysis of fracture toughness of soda-lime glass determined by indentation [J]. J. Non-Cryst. Solids, 2001, 279: 219
63 Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceram. Int., 2010, 36: 2103
64 Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
65 Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum [J]. Mater. Sci. Eng.: A, 2007, 463: 107
66 Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures [J]. J. Mater. Sci., 1995, 30: 770
[1] 段启强, 王斌, 张鹏, 屈瑞涛, 张哲峰. 高强钢断裂韧性KIC的小尺寸试样评价方法[J]. 材料研究学报, 2018, 32(8): 561-566.
[2] 张进, 柴孟瑜, 项靖海, 段权, 李丽婵. 316LN不锈钢断裂过程的声发射特性[J]. 材料研究学报, 2018, 32(6): 415-422.
[3] 卢叶茂, 梁益龙, 龙绍檑, 尹存宏, 杨明. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290-300.
[4] 李佳君, 刘浩, 左永刚, 白旸, 袁禾蔚, 何其宇, 姜龙, 郭辉, 孙振路, 陈广超. 磁控溅射铜膜与基底结合强度的分析研究*[J]. 材料研究学报, 2016, 30(8): 634-640.
[5] 梁恩泉, 黄森森, 马英杰, 张韧, 雷家峰, 柳洋. Fe对Ti-6Al-4V ELI合金力学性能的影响[J]. 材料研究学报, 2016, 30(4): 299-306.
[6] 王晶, 栾春波. 硫化氢腐蚀对X80管线钢断裂韧性的影响[J]. 材料研究学报, 2016, 30(3): 179-185.
[7] 邓运来, 王亚风, 林化强, 叶凌英, 刘胜胆, 谭谦, 张新明. 挤压温度对Al-Zn-Mg合金力学性能的影响*[J]. 材料研究学报, 2016, 30(2): 87-94.
[8] 张松,郭喜平. Cr含量对Nb-Si基超高温合金组织和室温断裂韧性的影响[J]. 材料研究学报, 2015, 29(9): 641-648.
[9] 马收,郭建春. 有机粘土/聚醚砜/环氧树脂杂化纳米复合材料的制备和性能*[J]. 材料研究学报, 2014, 28(10): 794-800.
[10] 王元清,刘希月,石永久. 960 MPa高强度钢材对接焊缝的低温断裂韧性*[J]. 材料研究学报, 2013, 27(3): 237-246.
[11] 王富强 王磊 刘杨 封辉 王朋. 不同温度下GH690合金断裂韧性及断裂行为[J]. 材料研究学报, 2010, 24(3): 299-304.
[12] 历伟 严小伟 王靖岱 阳永荣 Alina Buda Blumich BERNHARD. 1H固体核磁共振技术对管材用Cr系催化剂催化乙烯共聚物及不同耐压等级管材料的研究[J]. 材料研究学报, 2009, 23(3): 242-250.
[13] 许峰; 胡小方; 赵建华; 蒋锐 . 铝粉固相烧结过程中的微结构演化[J]. 材料研究学报, 2008, 22(5): 473-478.
[14] 益小苏; 许亚洪; 程群峰; 方征平 . 层间韧化的碳纤维复合材料层压板的力学性能[J]. 材料研究学报, 2008, 22(4): 337-346.
[15] 杨世源; 金孝刚; 王军霞; 梁晓峰; 贺红亮 . 冲击波加载技术及其在材料研究中的应用[J]. 材料研究学报, 2008, 22(2): 120-124.