Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 248-254    DOI: 10.11901/1005.3093.2016.378
  研究论文 本期目录 | 过刊浏览 |
BCZT无铅压电陶瓷的铁电相变
方必军1(), 刘星1, 张震乾1, 陈智慧1, 丁建宁1(), 赵祥永2, 罗豪甦3
1 常州大学材料科学与工程学院 江苏省光伏科学与工程协同创新中心 常州 213164
2 上海师范大学物理系 上海师范大学光电材料与器件重点实验室 上海 200234
3 中国科学院无机功能材料与器件重点实验室 上海 201800
Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics
Bijun FANG1(), Xing LIU1, Zhenqian ZHANG1, Zhihui CHEN1, Jianning DING1(), Xiangyong ZHAO2, Haosu LUO3
1 School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China
2 Department of Physics, Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, China
3 Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, China
引用本文:

方必军, 刘星, 张震乾, 陈智慧, 丁建宁, 赵祥永, 罗豪甦. BCZT无铅压电陶瓷的铁电相变[J]. 材料研究学报, 2017, 31(4): 248-254.
Bijun FANG, Xing LIU, Zhenqian ZHANG, Zhihui CHEN, Jianning DING, Xiangyong ZHAO, Haosu LUO. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics[J]. Chinese Journal of Materials Research, 2017, 31(4): 248-254.

全文: PDF(1206 KB)   HTML
摘要: 

根据升温拉曼光谱和电学性能的变化研究了(Ba0.84Ca0.15Sr0.01)(Ti0.90Zr0.09Sn0.01)O3(BCSTZS)陶瓷的铁电相变。BCSTZS陶瓷的拉曼模分为v3(LO),v3(TO),v4(LO),v2(LO,TO),v1(TO)和v1(LO)模。v3(LO)和v4(LO)模在升温至80℃后消失,表明BCSTZS的相结构从四方铁电相转变为立方顺电相。v3(TO),v2(LO,TO),v1(TO)和v1(LO)拉曼模的峰强和峰宽在室温和80℃附近出现明显的异常变化,表明在这两个温度点附近分别发生正交-四方和四方-立方铁电相变。BCSTZS陶瓷在高于居里温度(TC)时仍然存在拉曼峰,表明其内部存在极性微区。随着温度的升高谐振频率(fr)和反谐振频率(fa)互相接近,faTC附近出现不连续变化,而应变和逆压电系数d33*(d33*=Smax/Emax)值随着温度的升高而逐渐降低,进一步证明发生了铁电相变。

关键词 无机非金属材料无铅压电陶瓷铁电相变拉曼光谱BCSTZS电学性能    
Abstract

The ferroelectric phase transition characteristics of the (Ba0.84Ca0.15Sr0.01)(Ti0.90Zr0.09Sn0.01)O3 (BCSTZS) ceramics were investigated by the temperature-dependent Raman spectroscopy and electrical performance. The Raman active modes of the BCSTZS ceramics can be assigned as modes such as v3(LO), v3(TO), v4(LO), v2(LO,TO), v1(TO) and v1(LO). The modes of v3(LO) and v4(LO) disappear abruptly when the temperature extends beyond 80 °C, indicating that the phase structure of the BCSTZS ceramics transforms from tetragonal ferroelectric (FET) phase to cubic paraelectric (PC) phase. The intensity and line width of Raman modes v3(TO), v2(LO,TO), v1(TO) and v1(LO) exhibit notably anomalous change around room temperature (20℃) and 80℃, showing the signal of FEO-FET (O indicating the orthorhombic ferroelectric phase) and FET-PC phase transitions. The existence of Raman active-modes, maximum strain and d33* values above the TC temperatures indicates that the local polar micro-regions still retain in the cubic matrix phase. With the increase of temperature the resonant (fr) and antiresonant (fa) frequencies approach to each other, the fa shows a discontinuous jump around TC, and the maximum strain and large signal d33* values decrease gradually, proving further the occurrence of the ferroelectric phase transition.

Key wordsinorganic non-metallic materials    lead-free piezoelectric ceramics    ferroelectric phase transition    Raman spectra    BCSTZS    electrical properties
收稿日期: 2016-07-04     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51577015, 11304333);江苏省产学研合作前瞻性联合研究项目(BY2014037-06);江苏省高校自然科学研究重大项目(15KJA43002)和江苏高校优势学科建设工程项目
作者简介:

作者简介 方必军,男,1971年生, 博士

图1  BCSTZS陶瓷的升温拉曼光谱
图2  BCSTZS陶瓷在不同温度的拉曼光谱和洛伦兹分峰
图3  拉曼振动模的波数随温度的变化
图4  v3(TO) (a),v2(LO, TO) (b),v1(TO) (c)和v1(LO) (d)拉曼模的峰强随温度的变化
图5  v3(TO) (a), v2(LO, TO) (b), v1(TO) (c)和v1(LO) (d)拉曼模的峰宽随温度的变化
图6  BCSTZS陶瓷的谐振频率(fr)和反谐振频率(fa)随温度的变化
图7  双向(a)和单向(b)场致应变曲线、电流-电场曲线(c)随温度的变化, 测试电场为20 kV/cm; 单向应变、双向应变和逆压电系数d33* 的值随温度的变化(d)
[1] Tran-Huu-Hue L P, Levassort F, Felix N, et al. Comparison of several methods to characterise the high frequency behaviour of piezoelectric ceramics for transducer applications[J]. Ultrasonics, 2000, 38: 219
[2] Chu S Y, Chen T Y, Tsai I T, et al.Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device[J]. Sensor. Actuat.: Phys., 2004, 113A: 198
[3] Setter N, Waser R.Electroceramic materials[J]. Acta Mater., 2000, 48: 151
[4] Haertling G H.Ferroelectric ceramics: history and technology[J]. J. Am. Ceram. Soc., 1999, 82: 797
[5] R?del J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J. Am. Ceram. Soc., 2009, 92: 1153
[6] Li J F, Wang K, Zhu F Y, et al.(K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. J. Am. Ceram. Soc., 2013, 96: 3677
[7] Bechmann R.Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations[J]. J. Acoust. Soc. Am., 1956, 28: 347
[8] Liu W F, Ren X B.Large piezoelectric effect in Pb-free ceramics[J]. Phys. Rev. Lett., 2009, 103: 257602
[9] Bao H X, Zhou C, Xue D Z, et al.A modified lead-free piezoelectric BZT-xBCT system with higher TC[J]. J. Phys. D: Appl. Phys., 2010, 43: 465401
[10] Gao J H, Hu X H, Zhang L, et al.Major contributor to the large piezoelectric response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion[J]. Appl. Phys. Lett., 2014, 104: 252909
[11] Ehmke M C, Ehrlich S N, Blendell J E, et al.Phase coexistence and ferroelastic texture in high strain (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics[J]. J. Appl. Phys., 2012, 111: 124110
[12] Gao J H, Xue D Z, Wang Y, et al.Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics[J]. Appl. Phys. Lett., 2011, 99: 092901
[13] Keeble D S, Benabdallah F, Thomas P A, et al.Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)[J]. Appl. Phys. Lett., 2013, 102: 092903
[14] Tian Y, Chao X L, Jin L, et al.Polymorphic structure evolution and large piezoelectric response of lead-free (Ba, Ca)(Zr, Ti)O3 ceramics[J]. Appl. Phys. Lett., 2014, 104: 112901
[15] Zhang L, Zhang M, Wang L, et al.Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution[J]. Appl. Phys. Lett., 2014, 105: 162908
[16] Singh R, Kambale K, Kulkarni A R, et al.Structure composition correlation in KNN-BT ceramics-An X-ray diffraction and Raman spectroscopic investigation[J]. Mater. Chem. Phys., 2013, 138: 905
[17] Rout D, Moon K S, Rao V S, et al.Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy[J]. J. Ceram. Soc. Japan, 2009, 117: 797
[18] Luo L, Ge W W, Li J F, et al.Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition[J]. J. Appl. Phys., 2011, 109: 113507
[19] Schütz D, Deluca M, Krauss W, et al.Lone-pair-induced covalency as the cause of temperature and field-induced instabilities in bismuth sodium titanate[J]. Adv. Funct. Mater., 2012, 22: 2285
[20] Liu X, Chen Z H, Fang B J, et al.Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping[J]. J. Alloy. Compd., 2015, 640: 128
[21] Liu X, Wu D, Chen Z, et al.Ferroelectric, dielectric and pyroelectric properties of Sr and Sn co-doped BCZT lead free ceramics[J]. Adv. Appl. Ceram., 2015, 114: 436
[22] Perry C H, Hall D B.Temperature dependence of the Raman spectrum of BaTiO3[J]. Phys. Rev. Lett., 1965, 15: 700
[23] Souza I A, Gurgel M F C, Santos L P S, et al. Theoretical and experimental study of disordered Ba0.45Sr0.55TiO3 photoluminescence at room temperature[J]. Chem. Rev., 2006, 322: 343
[24] Souza I A, Sim?es A Z, Longo E, et al.Synthesis of Ba0.5Sr0.5-(Ti0.80Sn0.20)O3 prepared by the soft chemical method[J]. Mater. Lett., 2007, 61: 4086
[25] Zhu L F, Zhang B P, Zhao L, et al.High piezoelectricity of BaTiO3-CaTiO3-BaSnO3 lead-free ceramics[J]. J. Mater. Chem., 2014, 2C: 4764
[26] Ramana V, Mahajan E A, Gra?a M P F, et al. Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics[J]. Mater. Res. Bull., 2013, 48: 4395
[27] Shen M R, Siu G G, Xu Z K, et al.Raman spectroscopy study of ferroelectric modes in [001]-oriented 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals[J]. Appl. Phys. Lett., 2005, 86: 252903
[28] Cheng J, Yang Y, Tong Y H, et al.Study of monoclinic-tetragonal-cubic phase transition in Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystals by micro-Raman spectroscopy[J]. J. Appl. Phys., 2009, 105: 053519
[29] Huang L Z, Li G R, Fu D S, et al.Large and temperature-independent piezoelectric response in Pb(Mg1/3Nb2/3)O3-BaTiO3-PbTiO3[J]. Appl. Phys. Lett., 2012, 101: 192901
[30] Zhang W J, Li W W, Chen X G, et al.Phonon mode and phase transition behaviors of (1-x)PbSc1/2Ta1/2O3-xPbHfO3 relaxor ferroelectric ceramics determined by temperature-dependent Raman spectra[J]. Appl. Phys. Lett., 2011, 99: 041902
[31] Dai Y J, Zhang X W, Zhou G Y.Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics[J]. Appl. Phys. Lett., 2007, 90: 262903
[32] Svitelskiy O, Toulouse J, Yong G, et al.Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal[J]. Phys. Rev., 2003, 68B: 104107
[33] Liu X, Wu D, Fang B J, et al.Aging characteristics of 0.7Pb-(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals with different crystal orientations[J]. Appl. Phys., 2015, 119A: 1469
[34] Yan H X, Inam F, Viola G, et al.The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops[J]. J. Adv. Dielectrics., 2011, 1: 107
[35] Wang K, Hussain A, Jo W, et al.Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics[J]. J. Am. Ceram. Soc., 2012, 95: 2241
[36] Jo W, Dittmer R, Acosta M, et al.Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective[J]. J. Electroceram., 2012, 29: 71
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.