Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 241-247    DOI: 10.11901/1005.3093.2016.752
  研究论文 本期目录 | 过刊浏览 |
C/Co核壳亚微米复合物的吸波性能
王晓磊(), 包秀坤, 关银燕, 徐舸
沈阳工业大学理学院 沈阳 110870
Microwave Absorption Properties of Submicro-composites of Core-shell C/Co
Xiaolei WANG(), Xiukun BAO, Yinyan GUAN, Ge XU
School of Science, Shenyang University of Technology, Shenyang 110870, China
引用本文:

王晓磊, 包秀坤, 关银燕, 徐舸. C/Co核壳亚微米复合物的吸波性能[J]. 材料研究学报, 2017, 31(4): 241-247.
Xiaolei WANG, Xiukun BAO, Yinyan GUAN, Ge XU. Microwave Absorption Properties of Submicro-composites of Core-shell C/Co[J]. Chinese Journal of Materials Research, 2017, 31(4): 241-247.

全文: PDF(1666 KB)   HTML
摘要: 

采用液相合成和后续的热处理工艺制备钴包碳的C/Co核壳亚微米复合物,研究了复合物的吸波性能。结果表明:热处理使C/Co核壳亚微米复合物的结晶性增强,使形貌由C/Co-雪花片壳层的核壳结构转变为C/Co-壳层闭合的核壳结构,饱和磁化强度提高而矫顽力降低。C/Co壳层闭合的核壳亚微米复合物(50%,质量分数)-石蜡的吸波样品具有优异的吸波性能,在11 GHz处最小反射损耗为-23 dB,厚度为2.5 mm,单层厚度的吸波频带(RL<-10 dB)达到3 GHz。随着吸波样品厚度的增大吸收峰向低频移动,并出现多重吸收峰。C/Co核壳亚微米复合物优异的吸波性能,可归因于较好的阻抗匹配、介电损耗和1/4波长干涉相消原理。

关键词 复合材料微波吸收性能热处理C/Co核壳亚微米复合物    
Abstract

Submicro-composites of core-shell C/Co were synthesized by a two step process of liquid synthesis and heat treatment with C as core- and Co as shell-material, and then their microwave absorption properties were investigated. Results show that the heat treatment process can enhance the crystallinity of the prepared C/Co-composites and alter their morphology, i.e. transforming from a core/shell structure with snowflak like shell to a core/shell structure with enclosed shell. Meanwhile,their saturation magnetization of increases while coercivity decreases. Finally a mixture of the prepared C/Co-composite with paraffin (50%, mass fraction) show excellent microwave absorption property i.e. a layer of such mixture of 2.5 mm in thickness exhibits a minimum reflection loss (RL) of -23 dB at 11 GHz ,and an effective bandwidth (RL<-10 dB) of 3 GHz. With the increase of layer thickness, the absorption peak shifts gradually to low frequencies and multiple-absorption peaks emerge. The excellent microwave absorption properties may be attributed to the better impedance matching, dielectric loss and quarter-wavelength interference cancellation etc..

Key wordscomposite    microwave absorption properties    heat treatment    C/Co core-shell submicro-composites
收稿日期: 2016-07-06     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51601120), 沈阳市科技局(F15-163-4-00)和辽宁省教育厅(L2015396)资助
作者简介:

作者简介 王晓磊,男,1982年生,博士生

图1  热处理前后C/Co亚微米复合物的XRD图谱
图2  热处理前后C/Co亚微米复合物的Raman图谱
图3  碳球样品、C/Co-雪花片壳层的核壳结构以及C/Co-壳层闭合的核壳结构的SEM图像
图4  热处理前后C/Co亚微米复合物的室温磁滞回线
图5  热处理前后C/Co亚微米复合物(50%)-石蜡复合物的复介电系数实部、虚部、复磁导率实部和虚部与频率关系
图6  热处理前后C/Co亚微米复合物(50%)-石蜡复合物的μ″(μ')-2f-1数值与频率的关系
图7  热处理前后C/Co亚微米复合物(50%)-石蜡复合物的阻抗匹配和衰减系数与频率的关系
图8  热处理前后C/Co亚微米复合物(50%)-石蜡复合物的吸波性能和热处理后样品的1/4波长干涉相消计算
[1] Wang H, Dai Y, Gong W, et al.Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances[J]. Appl. Phys. Lett., 2013, 102(22): 223113
[2] Wen S L, Liu Y, Zhao X C, et al.Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18333
[3] Wen S L, Liu Y, Zhao X C, et al.Optimal microwave absorption of hierarchical cobalt dendrites enhanced by multiple dielectric and magnetic resonance[J]. Appl. Phys. Lett., 2014, 116(5): 054310
[4] Shi G, Zhang B, Wang X, et al.Enhanced microwave absorption properties of core double-shell type Fe@C@BaTiO3 nanocapsules[J]. J. Alloys Comp., 2016, 655: 130
[5] Liu Q, Zi Z, Zhang M, et al.Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method[J]. J. Alloys Comp., 2013, 561(6): 65
[6] Qiang R, Du Y, Wang Y, et al.Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 599
[7] Han M, Yin X, Ren S, et al.Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption[J]. RSC Adv., 2016, 6(8): 6467
[8] Zhou L, Zhou W, Chen M, et al.Dielectric and microwave absorbing properties of low power plasma sprayed Al2O3/Nb composite coatings[J]. Mater. Sci. Eng., B 2011, 176(18): 1456
[9] Zhao B, Shao G, Fan B, et al.Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties[J]. J. Mater. Chem., A 2015, 3(19): 10345
[10] Yang Y, Xu C, Xia Y, et al.Synthesis and microwave absorption properties of FeCo nanoplates[J]. J. Alloys Comp., 2010, 493(1): 549
[11] Wang X, Shi G, Shi F N, et al.Synthesis of hierarchical cobalt dendrites based on nanoflakes self-assembly and their microwave absorption properties[J]. RSC Adv., 2016, 6(47): 40844
[12] Yan A, Liu Y, Li X, et al.A NaAc-assisted large-scale coprecipitation synthesis and microwave absorption efficiency of Fe3O4 nanowires[J]. Mater. Lett., 2012, 68(3): 402
[13] Liu Q, Cao Q, Bi H, et al.CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wide band Microwave Absorption[J]. Adv. Mater., 2016, 28(3): 486
[14] Liu T, Xie X, Pang Y, et al.Co/C nanoparticles with low graphitization degree: a high performance microwave absorbing material[J]. J. Mater. Chem., C 2016, 4(8): 1727
[15] Jiang J, Li D, Geng D, et al.Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites[J]. Nanoscale, 2014, 6(8): 3967
[16] Wang L, Huang Y, Sun X, et al.Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures[J]. Nanoscale, 2014, 6(6): 3157
[17] Ren Y L, Wu H Y, Lu M M, et al.Quaternary Nanocomposites Consisting of Graphene, Fe3O4@Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties[J]. ACS Appl. Mater. Interfaces, 2012, 4(12): 6436
[18] Meng F, Wei W, Chen X, et al.Design of porous C@Fe3O4 hybrid nanotubes toward their excellent microwave absorption[J]. Phys. Chem. Chem. Phys., 2015, 18(4): 2510
[19] Che R, Peng L M, Duan X, et al.Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv. Mater., 2014,16(5): 401
[20] Wang C, Xu T, Wang C A,Microwave absorption properties of C/(C@CoFe) hierarchical core-shell spheres synthesized by using colloidal carbon spheres as templates, Ceram. Int., 2016, 42(7): 9178
[21] Yao T, Cui T, Fang X, et al.Preparation of yolk-shell FexOy/Pd @mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2013, 5(13): 5896
[22] Wang X, Yu L, Hu P, et al.Synthesis of Single-Crystalline Hollow Octahedral NiO[J]. Crys. Growth Des., 2007, 7(12): 2415
[23] Titirici M M, Antonietti M, Thomas A, A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach[J]. Chem. Mater., 2006,18(16): 3808
[24] Jagadeesan D, Mansoori U, Mandal P, et al.Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single-Crystalline α-Fe2O3 Nanostructures[J]. Angew. Chem. Int. Ed., 2008, 47(40): 7685
[25] Zhang X F, Dong X L, Huang H, et al.Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. J. Phys. D: Appl. Phys., 2007, 40(17): 5383
[26] Roy D, Chhowalla M, Wang H, et al.Characterization of carbon nano-onions using Raman spectroscopy[J]. Chem. Phys. Lett., 2003, 373(1): 52
[27] Zhang Y J, Yao Q, Zhang Y, et al.Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres[J]. Cryst. Growth Des., 2008, 8(9): 3206
[28] Zhang Y J, Or S W, Zhang Z D, Hydrothermal self-assembly of hierarchical cobalt hyperbranches by a sodium tartrate-assisted route[J]. RSC Adv., 2011, 1(7): 1287
[29] Wang X, Yu J, Shi G, et al.Solvothermal synthesis of magnetite hollow submicrospheres and mesoporous nanoparticles[J]. J. Mater. Sci., 2014, 49(17): 6029
[30] Wang C, Han X, Zhang X, et al.Controlled Synthesis and Morphology-Dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies, J. Phys. Chem., C 2010, 114(7): 14826
[31] Sun G, Dong B, Cao M, et al.Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption[J]. Chem. Mater., 2011, 23(5): 1587
[32] Liu T, Pang Y, Zhua M, et al.Microporous Co@CoO nanoparticles with superior microwave absorption properties[J]. Nanoscale, 2014, 6(4): 2447
[33] Wang G, Peng X, Yu L, et al.Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition[J] J. Mater. Chem., A, 2015, 3(6): 2734
[34] Kittel C, on the theory of ferromagnetic resonance absorption[J]. Phys. Rev., 1948, 73(2): 155
[35] Aharoni A, Exchange resonance modes in a ferromagnetic sphere[J]. J. Appl. Phys., 1991, 69(11): 7762
[36] Sun Y, Liu X, Feng C, et al.A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber[J]. J. Alloys Comp., 2014, 586: 688
[37] Li X, Yi H, Zhang J, et al.Fe3O4-graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. J. Nanopart. Res., 2013, 15(3): 1472
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.