Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 255-260    DOI: 10.11901/1005.3093.2016.381
  研究论文 本期目录 | 过刊浏览 |
钯氮共掺杂TiO2薄膜的光催化还原性能
陈海洋, 何菲, 张旭海, 邵起越, 方峰()
东南大学材料科学与工程学院 南京 211189
Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films
Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG()
School of Materials Science and Engineering,Southeast University,Nanjing 211189,China
引用本文:

陈海洋, 何菲, 张旭海, 邵起越, 方峰. 钯氮共掺杂TiO2薄膜的光催化还原性能[J]. 材料研究学报, 2017, 31(4): 255-260.
Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG. Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films[J]. Chinese Journal of Materials Research, 2017, 31(4): 255-260.

全文: PDF(1886 KB)   HTML
摘要: 

采用磁控溅射法制备钯氮共掺杂二氧化钛薄膜,研究了Pd含量对薄膜的表面形貌、吸收光谱和可见光催化还原性能的影响。结果表明:Pd、N共掺杂TiO2薄膜具有锐钛矿相和金红石相混合的结构,Pd的掺杂使TiO2从锐钛矿相向金红石相转变。Pd元素主要以PdO的形式存在于薄膜表面。随着Pd含量的提高薄膜表面粗糙度增大,致密度减小。薄膜吸收光谱的吸收限,逐渐向可见光方向移动。Pd含量为0.4%(原子百分比)的薄膜,具有最优的可见光催化还原性能。

关键词 无机非金属材料光催化磁控溅射二氧化钛    
Abstract

Palladium and nitrogen co-doped TiO2 films were prepared by DC magnetron sputtering and then characterized in terms of surface morphology, absorption spectra and photocatalytic reduction property under visible light etc.. The results show that the N-TiO2 films are composed of anatase while they turn to be composed of rutile gradually due to the presence of Pd. After being co-doped with Pd, the films become loose with rougher surface. The introduction of Pd to N-TiO2 thin films increases its effective absorption of visible light, as well as enhances its ability to capture electrons and separate photo-generated electron-hole pairs effectively. The photocatalytic reduction property of the films declines with the increasing Pd amount. Among others, the Pd-N-TiO2 films with 0.4% (atomic fraction) Pd have the best photocatalytic reduction property.

Key wordsinorganic non-metallic materials    photocatalysis    magnetron sputtering    TiO2
收稿日期: 2016-07-04     
ZTFLH:  TB43  
基金资助:国家自然科学基金(51371050, 51302038);江苏省六大人才高峰计划(2015-XCL-004)
作者简介:

作者简介 陈海洋,女,1992年生,硕士生

Sputtering power of Pd target/W Sputtering power of Ti target/W Partial pressure of N2/% Substrate temperature/℃ Sputtering pressure/Pa Deposition time/h
7 200 83.3 250 0.5 2
10
13
表1  不同Pd含量Pd、N共掺杂TiO2沉积薄膜的工艺参数
图1  不同Pd含量的Pd、N共掺杂TiO2薄膜形貌
图2  Pd、N共掺杂的和N掺杂的TiO2薄膜的XRD图谱
图3  不同Pd含量沉积的Pd-N-TiO2薄膜的Pd 3d XPS拟合图谱
图4  不同Pd含量的Pd-N-TiO2薄膜的紫外-可见光吸收光谱
图5  不同Pd含量的Pd-N-TiO2薄膜的可见光降解Cr(VI)剩余百分数-时间曲线
图6  不同Pd含量的Pd-N-TiO2薄膜的Ti2p XPS拟合图谱
[1] Lu S J, Wang Y Y, Teng Y G, et al.Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan[J]. Environ. Monitor. Manage., 2015, 187: 627
[2] Yuan X Y, Zhang L J, Li J Z, et al.Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China[J]. Catena, 2014, 119: 52
[3] Islam M S, Ahmed M K, Raknuzzaman M, et al.Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country[J]. Ecol. Ind., 2015, 48: 182
[4] Fu F L, Wang Q.Removal of heavy metal ions from wastewaters: A review[J]. J. Environ. Manage., 2011, 92: 407
[5] Erdem E, Karapinar N, Donat R.The removal of heavy metal cations by natural zeolites[J]. J. Colloid Interface Sci., 2004, 280: 309
[6] Liang S, Feng N C, Guo X Y.Progress of heavy metal wastewater treatment by biosorption[J]. Technol. Water Treat., 2009, 35(3): 13(梁莎, 冯宁川, 郭学益. 生物吸附法处理重金属废水研究进展[J]. 水处理技术, 2009, 35(3): 13)
[7] Sun Q, Li H, Zheng S L, et al.Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI)[J]. Appl. Surf. Sci., 2014, 311: 369
[8] We Y T, Liu S Z, Zhang Q, et al.Partially conjugated polyvinyl chloride-modified TiO2 nanoparticles for efficient visible-light-driven photocatalytic reduction of aqueous Cr(VI)[J]. Mater. Lett., 2016, 163: 262
[9] Xu B, Wang S L, Li L Q, et al.Photocatalytic effect of Zn/ZnO nano-composite[J]. J. Funct. Mater., 2010, 41: 307(徐波, 王树林, 李来强等. 纳米Zn/ZnO复合结构的光催化活性[J]. 功能材料, 2010, 41: 307)
[10] Huang J Y, Liu G G, Zhang W H, et al.Progress on photocatalytic reduction of heavy metal ions in wastewater[J]. Environ. Sci. Technol., 2008, 31(12): 104(黄锦勇, 刘国光, 张万辉等. TiO2光催化还原重金属离子的研究进展[J]. 环境科学与工程, 2008, 31(12): 104)
[11] Yoneyama H, Yamashita Y, Tamura H.Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts[J]. Nature, 1979, 282: 817
[12] Qui?ones C, Ayala J, Vallejo W.Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films[J]. Appl. Surf. Sci., 2010, 257: 367
[13] Fang F, Li Q, Shang J K.Enhanced visible-light absorption from Ag2O nanoparticles in nitrogen-doped TiO2 thin films[J]. Surf. Coat. Technol., 2011, 205: 2919
[14] Chen H, Shao Y, Xu Z Y, et al.Effective catalytic reduction of Cr(VI) over TiO2 nanotube supported Pd catalysts[J]. Appl. Catal.: Environ., 2011, 105B: 255
[15] Zhang L L, Gao H J, Liao Y W.Enhancement of photocatalytic activity of TiO2 with cross-linked poly (amphoteric ionic liquid)[J]. Chin. J. Mater. Res., 2016, 30: 307(张娈娈, 高和军, 廖运文. 交联聚两性离子液基材料增强TiO2光催化性能的研究[J]. 材料研究学报, 2016, 30: 307)
[16] Jagadale T C, Takale S P, Sonawane R S, et al.N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method[J]. J. Phys. Chem., 2008, 112C: 14595
[17] Zhang Y C, Yang M, Zhang G S, et al. HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water [J]. Appl. Catal.: Environ., 2013, 142-143B: 249
[18] Wu P G, Ma C H, Shang J K.Effects of nitrogen doping on optical properties of TiO2 thin films[J]. Appl. Phys., 2005, 81A: 1411
[19] Di Valentin C, Pacchioni G, Selloni A, et al.Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J. Phys. Chem., 2005, 109B: 11414
[20] Hao D, Jiang C H, Yang Z M, et al.The preparation of N-doped TiO2 and its photocatalytic property[J]. Chin. J. Mater. Res., 2013, 27: 247)(郝栋, 姜春海, 杨振明等. N掺杂TiO2的制备和光催化性能[J]. 材料研究学报, 2013, 27: 247)
[21] Li Q, Liang W, Shang J K.Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films[J]. Appl. Phys. Lett., 2007, 90: 063109
[22] Lee H, Shin M, Lee M, et al.Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect[J]. Appl. Catal.: Environ., 2015, 165B: 20
[23] He F, Wang K, Zhou X F, et al. Synthesis and photocatalytic properties of Ag-modified N-doped TiO2 thin films[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(1): 27(何菲,王科,周雪峰等. 银修饰氮掺杂TiO2薄膜的制备及光催化性能研究[J]. 真空科学与技术学报,2015,35(1): 27)
[24] Sato S.Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem. Phys. Lett., 1986, 123: 126
[25] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269
[26] Zhang Z, Mestl G, Kn?zinger H, et al.Effects of calcination program and rehydration on palladium dispersion in zeolites NaY and 5A[J]. Appl. Catal., 1992, 89A: 155
[27] Brun M, Berthet A, Bertolini J C.XPS, AES and Auger parameter of Pd and PdO[J]. J. Elec. Spectrosc. Relat. Phenom., 1999, 104: 55
[28] Panpranot J, Kontapakdee K, Praserthdam P.Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation[J]. J. Phys. Chem., 2006, 110B: 8019
[29] Zhang L D, Mou J M.Nanomaterials and Nanostructures [M]. Beijing: Science Press, 2001(张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2001)
[30] Swanepoel R.Determination of the thickness and optical constants of amorphous silicon[J]. J. Phys.: Sci. Instrum., 1983, 16E: 1214
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.