Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 747-758    DOI: 10.11901/1005.3093.2022.667
  研究论文 本期目录 | 过刊浏览 |
Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为
闫春良1,2, 郭鹏2, 周靖远2, 汪爱英2,3()
1.上海大学材料科学与工程学院 上海 200444
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
3.中国科学院大学 材料与光电研究中心 北京 100049
Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films
YAN Chunliang1,2, GUO Peng2, ZHOU Jingyuan2, WANG Aiying2,3()
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
Chunliang YAN, Peng GUO, Jingyuan ZHOU, Aiying WANG. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. Chinese Journal of Materials Research, 2023, 37(10): 747-758.

全文: PDF(12136 KB)   HTML
摘要: 

以Cu-C拼接靶为靶材,用高功率脉冲磁控溅射制备出4种Cu含量(原子分数)低于10%的Cu掺杂非晶碳(a-C: Cu)薄膜,研究了Cu含量对a-C:Cu薄膜组分结构、电学性能以及载流子输运行为的影响。结果表明:随着非晶碳中Cu含量的提高,a-C:Cu薄膜中sp2-C的含量提高、团簇尺寸增大、薄膜电阻率、透过率和光学带隙均减小,费米能级向价带偏移。Cu含量为2.77%和3.88%的样品在150~250 K的载流子输运机制为Mott型三维变程跳跃传导,在250~350 K则为热激活传导;而Cu含量(原子分数)为5.4%和7.28%的样品在150~350 K均为Mott型三维变程跳跃传导。掺入Cu,可控制非晶碳薄膜的光学和电学性能。

关键词 材料表面与界面电学性能高功率脉冲磁控溅射Cu掺杂非晶碳能带结构    
Abstract

The work aims to study the effect of doped Cu content on the structure, electrical properties and carrier transport behavior of amorphous carbon (a-C) films. The Cu doped a-C (a-C:Cu) films were deposited by a homemade High Power Impulse Magnetron Sputtering set with the Cu-C composite target as sputtering source. A series of a-C: Cu films with Cu content less than 10% (atomic fraction) were deposited by adjusting the position of substrates. The results demonstrated that increasing the doped Cu content led to the enhancement of the content and cluster size of sp2-C in films. Particularly, as the Cu content increased from 2.77% to 7.28%, the sp2-C content increased from 48% to 54%. Accordingly, this decreased the bandgap width from 3.87 eV to 2.93 eV, which corresponds to the reduction of electrical resistivity and transmittance in a-C: Cu films. For a-C: Cu films with Cu content in the range of 2.77%~7.28%, the voltage was positively linear correlated with the excitation in the I-V test, suggesting the dominated ohmic behavior. The resistance of all the a-C:Cu films decreased monotonically with the increase of temperature, demonstrating the typical semiconductor behavior. Specifically, when the Cu content varied in the range of 2.77%~3.88%, the electrical transport of a-C: Cu films was ascribed to the three-dimensional Mott-type variable range hopping conduction in lower temperature from 150 K to 250 K and the thermal activation transport within higher temperature range of 250~350 K, respectively. However, for a-C: Cu films with Cu content of 5.4%~7.28%, only Mott-type variable range hopping conduction played the key role for the carrier transport in temperature of 150~350 K. The results showed that the optical and electrical properties of amorphous carbon films could be significantly controlled by doping Cu, which brought forward the promising potential to develop the carbon-based photoelectric devices with high-performance.

Key wordsfoundational discipline in materials science    electrical properties    high power impulse magnetron sputtering    Cu doped amorphous carbon    band structure
收稿日期: 2022-12-16     
ZTFLH:  O484  
基金资助:国家自然科学基金(U20A20296);宁波市科技创新2025重大专项(2020Z023);王宽诚率先人才计划卢嘉锡国际团队(GJTD-2019-13);浙江省自然科学基金(LQ20E020004)
通讯作者: 汪爱英,研究员,aywang@nimte.ac.cn,研究方向为表面强化涂层材料与功能改性
Corresponding author: WANG Aiying, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn
作者简介: 闫春良,男,1997年生,硕士
图1  高功率脉冲磁控溅射设备的示意图
图2  Cu掺杂非晶碳薄膜截面的SEM形貌
图3  Cu掺杂非晶碳薄膜的三维AFM表面形貌
图4  Cu掺杂量不同的a-C: Cu薄膜的XPS全谱、各元素的含量、C 1s精细谱及各杂化碳含量、Cu 2p的精细谱以及Cu的俄歇谱
图5  Cu掺杂量不同的a-C: Cu薄膜的拉曼光谱及其拟合结果
图6  Cu掺杂量不同的a-C:Cu薄膜的XRD谱
图7  Cu含量为2.77%和7.28%样品的高分辨电子图像和选区电子衍射图
图8  Cu掺杂量为2.77%和7.28%样品的电子能量损失谱
图9  Cu掺杂量不同的a-C: Cu薄膜300 K时的 I-V特性曲线和电阻率的变化
图10  Cu掺杂量不同的a-C: Cu薄膜在150~350 K的I-V曲线
图11  Cu掺杂量不同的a-C: Cu薄膜在150~350 K的R-T曲线
图12  Cu掺杂量不同的a-C: Cu薄膜在不同温度范围的ln(R)与T-1/4和T-1的关系曲线
图13  Cu掺杂量不同的a-C: Cu薄膜的透过率曲线、(αhν)2-hν曲线以及光学带隙
图14  不同Cu掺杂量a-C: Cu薄膜 的二次电子截至边、价带相对费米能级的位置以及 (c) 能带结构
1 Bhowmick S, Shirzadian S, Alpas A T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction [J]. Surf. Coat. Technol., 2022, 431: 127995
doi: 10.1016/j.surfcoat.2021.127995
2 Zarei A, Momeni M. Effective target arrangement for detecting the properties of Ni doped diamond-like carbon by pulsed laser deposition [J]. Fuller. Nanotub. Carbon Nanostruct., 2022, 30: 942
doi: 10.1080/1536383X.2022.2050702
3 Khanmohammadi H, Wijanarko W, Cruz S, et al. Triboelectrochemical friction control of W- and Ag-doped DLC coatings in water-glycol with ionic liquids as lubricant additives [J]. RSC Adv., 2022, 12: 3573
doi: 10.1039/d1ra08814a pmid: 35425368
4 Rusop M, Omer A M M, Adhikari S, et al. Effects of deposition gas pressure on the properties of hydrogenated amorphous carbon nitride films grown by surface wave microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2005, 14: 975
doi: 10.1016/j.diamond.2004.12.040
5 Kim I S, Shim C E, Kim S W, et al. Amorphous carbon films for electronic applications [J]. Adv. Mater., doi: 10.1002/adma.202204912
6 Tian Q L, Zhao X N, Lin Y, et al. Thermal stable and low current complementary resistive switch with limited Cu source in amorphous carbon [J]. Appl. Phys. Lett., 2022, 121(18): 183502
doi: 10.1063/5.0118779
7 Tamulevičius S, Meškinis Š, Tamulevičius T, et al. Diamond like carbon nanocomposites with embedded metallic nanoparticles [J]. Rep. Prog. Phys., 2018, 81(2): 024501
8 Li X W, Zhang D, Lee K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first-principles study [J]. Thin Solid Films, 2016, 607: 67
doi: 10.1016/j.tsf.2016.04.004
9 Yaremchuk I, Meškinis Š, Bulavinets T, et al. Effect of oxidation of copper nanoparticles on absorption spectra of DLC: Cu nanocomposites [J]. Diam. Relat. Mater., 2019, 99: 107538
doi: 10.1016/j.diamond.2019.107538
10 Pandey B, Mukherjee J, Das B, et al. Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films [J]. Eur. Phys. J. Appl. Phys., 2014, 66(1): 10302
doi: 10.1051/epjap/2014130435
11 Meškinis Š, Gudaitis R, Šlapikas K, et al. Giant negative piezoresistive effect in diamond-like carbon and diamond-like carbon-based nickel nanocomposite films deposited by reactive magnetron sputtering of Ni target [J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15778
doi: 10.1021/acsami.7b17439
12 Anderson P W. Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958, 109: 1492
doi: 10.1103/PhysRev.109.1492
13 Tomidokoro M, Tunmee S, Rittihong U, et al. Electrical conduction properties of hydrogenated amorphous carbon films with different structures [J]. Materials, 2021, 14(9): 2355
doi: 10.3390/ma14092355
14 Tripathi R K, Panwar O S, Rawal I, et al. Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: application to light-dependent resistors [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(2): 2535
doi: 10.1007/s10854-020-05020-z
15 Abdolghaderi S, Astinchap B, Shafiekhani A. Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma [J]. J. Mater. Sci.: Mater. Electron., 2016, 27(7): 6713
doi: 10.1007/s10854-016-4620-4
16 Wan C H, Zhang X Z, Vanacken J, et al. Electro- and magneto-transport properties of amorphous carbon films doped with iron [J]. Diam. Relat. Mater., 2011, 20(1): 26
doi: 10.1016/j.diamond.2010.11.001
17 Li X W, Lee K R, Wang A Y. Chemical bond structure of metal-incorporated carbon system [J]. J. Comput. Theor. Nanosci., 2013, 10(8): 1688
doi: 10.1166/jctn.2013.3110
18 Li X W, Wang A Y, Lee K R. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system [J]. Thin Solid Films, 2012, 520(19): 6064
doi: 10.1016/j.tsf.2012.05.010
19 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng., 2002, 37R(4-6) : 129
20 Guo P, Li X W, Sun L L, et al. Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents [J]. Thin Solid Films, 2017, 640: 45
doi: 10.1016/j.tsf.2017.09.001
21 Kulak A I, Kondratyuk A V, Kulak T I, et al. Electrochemical pulsed deposition of diamond-like films by powerful coulostatic discharge in dimethylsulfoxide solution of lithium acetylide [J]. Chem. Phys. Lett., 2003, 378(1-2): 95
doi: 10.1016/S0009-2614(03)01258-2
22 Gong Y L, Jing P P, Zhou Y J, et al. Formation of rod-shaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J]. Diam. Relat. Mater., 2020, 102: 107654
doi: 10.1016/j.diamond.2019.107654
23 Zhou B, Liu Z B, Piliptsou D G, et al. Structure and optical properties of Cu-DLC composite films deposited by cathode arc with double-excitation source [J]. Diam. Relat. Mater., 2016, 69: 191
doi: 10.1016/j.diamond.2016.09.004
24 Ji L, Li H X, Zhao F, et al. Microstructure and mechanical properties of Mo/DLC nanocomposite films [J]. Diam. Relat. Mater., 2008, 17(11): 1949
doi: 10.1016/j.diamond.2008.04.018
25 Zhang H W, Tan H R, Jaenicke S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen [J]. J. Catal., 2020, 389: 19
doi: 10.1016/j.jcat.2020.05.018
26 Liu Y Y, Sun M H, Yuan Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage [J]. Adv. Funct. Mater., 2020, 30(14): 1910249
doi: 10.1002/adfm.v30.14
27 Kim J Y, Hong D, Lee J C, et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products [J]. Nat. Commun., 2021, 12(1): 3765
doi: 10.1038/s41467-021-24105-9
28 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B(20) : 14095
29 Xie J, Komvopoulos K. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films [J]. J. Appl. Phys., 2016, 119(9): 095304
30 Cuomo J J, Doyle J P, Bruley J, et al. Sputter deposition of dense diamond-like carbon-films at low-temperature [J]. Appl. Phys. Lett., 1991, 58(5): 466
doi: 10.1063/1.104609
31 Wang N, Komvopoulos K. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition [J]. J. Mater. Res., 2013, 28(16): 2124
doi: 10.1557/jmr.2013.206
32 Majeed S, Siraj K, Naseem S, et al. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering [J]. Mater. Res. Express, 2017, 4(7): 076403
33 Pandey B, Hussain S. Effect of nickel incorporation on the optical properties of diamond-like carbon (DLC) matrix [J]. J. Phys. Chem. Solids, 2011, 72(10): 1111
doi: 10.1016/j.jpcs.2011.06.003
34 Hu A, Alkhesho I, Zhou H, et al. Optical and microstructural properties of diamond-like carbon films grown by pulsed laser deposition [J]. Diam. Relat. Mater., 2007, 16(1): 149
doi: 10.1016/j.diamond.2006.04.008
35 Robertson J. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon [J]. Phys. Rev., 1996, 53B(24) : 16302
36 Siraj K, Khaleeq-ur-Rahman M, Rafique M S, et al. Pulsed laser deposition and characterization of multilayer metal-carbon thin films [J]. Appl. Surf. Sci., 2011, 257(15): 6445
doi: 10.1016/j.apsusc.2011.02.032
37 Li J F, Li Z Y, Liu X M, et al. Interfacial engineering of Bi2S3/Ti3C2T x MXene based on work function for rapid photo-excited bacteria-killing [J]. Nat. Commun., 2021, 12(1): 1224
doi: 10.1038/s41467-021-21435-6
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[7] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] 曾仁芬, 江向平, 陈超, 黄枭坤, 聂鑫, 叶芬. Er3+ 掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12 共生无铅压电陶瓷性能的影响[J]. 材料研究学报, 2022, 36(10): 760-768.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 张昌松, 王楚, 魏立柱, 杨官琳. 羟基磷灰石-钛酸钡仿人骨复合材料的制备及其性能[J]. 材料研究学报, 2022, 36(1): 40-48.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.