Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 705-712    DOI: 10.11901/1005.3093.2019.188
ARTICLES Current Issue | Archive | Adv Search |
Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test
YIN Qi1,2,LIU Miaoran1,3,LIU Yuwei1,PAN Chen1(),WANG Zhenyao1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test. Chinese Journal of Materials Research, 2019, 33(9): 705-712.

Download:  HTML  PDF(8248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of MgCl2- and NaCl-deposit on simulated atmospheric corrosion of Zn was comparatively investigated via wet-dry alternating corrosion test, as well as mass loss, X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS). The results show that the corrosion rate of Zn was significantly inhibited by the deposition of MgCl2; the corrosion products formed on Zn plate with NaCl deposit were Zn5(OH)8Cl2·H2O、Zn4CO3(OH)6·H2O and Zn(OH)2, while was only Zn5(OH)8Cl2·H2O for Zn plate with MgCl2 deposit. It was proposed that the corrosion may be caused by the decrease of pH, which was induced by the precipitation of Mg2+ ions and OH- ions, in the cathodic sites.

Key words:  materials failure and protection      atmospheric corrosion mechanism      laboratory simulated corrosion test      MgCl2      zinc     
Received:  09 April 2019     
ZTFLH:  TG172.3  
Fund: the National Natural Science Foundation of China(51671197);and Special Project of Chinese Academy of Sciences(XDA130040502)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.188     OR     https://www.cjmr.org/EN/Y2019/V33/I9/705

ElementFeCuPbSnCaZn
Composition/%0.0120.00050.0400.00050.0005Balance
Table 1  Elemental composition of the zinc samples in the experiments (mass fraction)
Fig.1  Thickness loss results of zinc with different salts deposited on after 528 h exposure
Fig.2  XRD patterns of the corroded zinc samples after 528 h exposure (a) Group Na; (b) Group Mg1 and Group Mg2
Deposited saltsCorrosion products
Na1

Zn5(OH)8Cl2·H2O

Zn4CO3(OH)6·H2O

Zn(OH)2

Mg1Zn5(OH)8Cl2·H2O
Mg2Zn5(OH)8Cl2·H2O
Table 2  XRD results of the corroded zinc samples after 528 h exposure
Fig.3  SEM-EDS results of the corroded zinc sample surfaces after 528 h exposure: (a) (b) (c) Group Na; (d) (e) (f) Group Mg1; (g) (h) (i) Group Mg2
Fig.4  SEM-EDS results of cross sections of the corroded zinc samples after 528 h exposure: (a) (d) (e) Group Na; (b) (f) Group Mg1; (c) (g) Group Mg2
Fig.5  SEM images of the zinc sample surfaces after removal of the corrosion products: (a) Group Na; (b) Group Mg1; (c) Group Mg2
Fig.6  Predominant diagram of the divalent zinc compounds in 4 mol·L-1 Cl- solution at 25℃ and 1.013×105 Pa with 350×10-6 CO2, the calculation was based on the equilibrium constant listed in Table 3 and the ionic strength was set as 0
Fig.7  pH value of the immersion solution of corroded zinc samples
Formulalg K0*
H2O ? OH-+H+-14
CO2+H2O ? H2CO3-1.468
CO2+H2O ? HCO3-+H+-7.82
CO2+H2O ? CO32-+2H+-18.149
Zn2++2CO2+2H2O ? Zn(CO3)22-+4H+-26.668
Zn2++CO2+H2O ? ZnCO3(s)+2H+-12.849
Zn2++CO2+H2O ? ZnHCO3++H+-5.72
5Zn2++2CO2+8H2O ? Zn5(OH)6(CO3)2(s)+10H+-45.988
Zn2++H2O ? ZnOH++H+-8.96
Zn2++2H2O ? Zn(OH)2(s)+2H+-16.9
Zn2++3H2O ? Zn(OH)3-+3H+-28.4
Zn2++4H2O ? Zn(OH)42-+4H+-41.2
Zn2++6H2O ? Zn(OH)64-+6H+-57.8
2Zn2++H2O ? Zn2OH3++H+-9.0
Zn2++H2O ? ZnO(s)+2H+-11.14
Zn2++2H2O ? α-Zn(OH)2(s)+2H+-12.45
Zn2++2H2O ? ε-Zn(OH)2(s)+2H+-11.5
Zn2++Cl- ? ZnCl+0.43
Zn2++2Cl- ? ZnCl20.45
Zn2++3Cl- ? ZnCl3-0.5
Zn2++4Cl- ? ZnCl42-0.2
Zn2++Cl-+H2O ? ZnClOH+H+-7.48
5Zn2++2Cl-+9H2O ? Zn5(OH)8Cl2·H2O(s)+9H+-38.5
Table 3  Reactions and equilibrium constants at ionic strength 0 at 25℃ and 1.013×105 Pa
Fig.8  The shifting phenomenon of the corrosion product Zn5(OH)8Cl2·H2O formed on zinc samples
Group

Zn5(OH)8Cl2·H2O

Main peak (2θ)

Zn

Main peak (2θ)

Na11.2343.27
Mg1, Mg211.0843.23
PDF card11.2343.23
Table 4  Main peak position of Zn5(OH)8Cl2·H2O and Zn in the experimental groups
1 ZhangX G. Corrosion of zinc and its alloy [J]. Corros. Pro., 2006, 27(01): 41
1 章小鸽. 锌和锌合金的腐蚀 [J]. 腐蚀与防护, 2006, 27(01): 41
2 ChenZ Y, PerssonD, LeygrafC. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2 [J]. Corros. Sci., 2008, 50(1): 111
3 ColeI S. Recent progress and required developments in atmospheric corrosion of galvanised steel and zinc [J]. Materials, 2017, 10(11): 1288
4 GraedelT E. Corrosion mechanism for zinc exposed to the atmosphere [J]. J. Electrochem. Soc., 1989, 136(4): C193
5 LiuY W, WangZ Y, CaoG W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment [J]. Mater. Chem. Phys., 2017, 198:243
6 NeufeldA K, ColeI S, BondA M, et al. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J]. Corros. Sci., 2002, 44(3): 555
7 WallinderI O, LeygrafC. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73(9): 1060
8 ProsekT, ThierryD, TaxenC, et al. Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions [J]. Corros. Sci., 2007, 49(6): 2676
9 ShiY Y, ZhangZ, ZhangJ Q, et al. Review of atmospheric corrosion of zinc and zinc alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25(06): 373
9 施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状 [J]. 中国腐蚀与防护学报, 2005, 25(06): 373)
10 PanC, HanW, WangZ Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25(12): 5382
11 HaoX H, WangZ Y, WangC. Atmospheric corrosion of zinc at Hongyanhe nuclear power station [J]. Equipm. Environ. Eng., 2012, 9(3): 108
11 郝显赫, 王振尧, 汪川. 锌在辽宁红沿河核电站的大气腐蚀研究 [J]. 装备环境工程, 2012, 9(03): 108)
12 WangZ Y, YuG C, HanW. Atmospheric corrosion performance of zinc at several selected test sites in China [J]. Corros. Sci. Prot. Technol., 2003, 15(04): 191
12 王振尧, 于国才, 韩 薇. 我国若干典型大气环境中的锌腐蚀 [J]. 腐蚀科学与防护技术, 2003, 15(04): 191)
13 WangZ Y, YuG C, ZhengY P, et al. Investigation on interrelation of accelerated corrosion testing and atmospheric exposure of zinc [J]. J. Chin. Soc. Corros. Pro., 1999, 19(04): 48
13 王振尧, 于国才, 郑逸苹等. 锌的加速腐蚀与大气暴露腐蚀的相关性研究 [J]. 中国腐蚀与防护学报, 1999, 19(04): 48)
14 WangJ, WangZ Y, KeW. A study of the evolution of rust on weathering steel submitted to the Qinghai salt lake atmospheric corrosion [J]. Mater. Chem. Phys., 2013, 139(1): 225
15 WangB B, WangZ Y, HanW, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in western China [J]. Corros. Sci., 2012, 59: 63
16 ZhangD, WangZ Y, ZhouY Z, et al. Initial corrosion behavior of galvanized steel in atmosphere by Qinghai Salt Lake [J]. Chin. J. Mater. Res., 2018, 32(04): 255
16 张 丹, 王振尧, 周永璋等. 镀锌钢在青海盐湖大气环境下的初期腐蚀行为研究 [J]. 材料研究学报, 2018, 32(04): 255)
17 YinQ, WangZ Y, PanC. Initial corrosion behavior of pure zinc in simulated tropical marine atmosphere [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(12): 2582
18 LindstromR, SvenssonJ E, JohanssonL G. The influence of salt deposits on the atmospheric corrosion of zinc - The important role of the sodium ion [J]. J. Electrochem. Soc., 2002, 149(2): B57
19 FalkT, SvenssonJ E, JohanssonL G. The influence of CO2 and NaCl on the atmospheric corrosion of zinc - A laboratory study [J]. J. Electrochem. Soc., 1998, 145(9): 2993
20 LindstromR, SvenssonJ E, JohanssonL G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc., 2000, 147(5): 1751
21 TsutsumiY, NishikataA, TsuruT. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49(3): 1394
22 HoskingN C, StromM A, ShipwayP H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49(9): 3669
[1] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 829-834.
[14] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!