Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 545-553    DOI: 10.11901/1005.3093.2019.571
ARTICLES Current Issue | Archive | Adv Search |
In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions
GONG Weiwei1, YANG Bingkun2(), CHEN Yun2, HAO Wenkui2, WANG Xiaofang2, CHEN Hao1
1.Inner Mongolia Power Research Institute, Hohhot 010020, China
2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing 102211, China
Cite this article: 

GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions. Chinese Journal of Materials Research, 2020, 34(7): 545-553.

Download:  HTML  PDF(3368KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The carbon steel corrosion behavior at defects of epoxy coating in the effect of different AC current densities was investigated by means of in situ micro-area electrochemistry and traditional macro-electrochemical techniques, namely electrochemical scanning microscopy (SECM) and electrochemical impedance spectroscopy techniques. SECM observation can directly reveal the change of electrochemical active points during the local corrosion process of carbon steel at coating defects. The results show that when AC current is present, the number of corrosion active points at the coating defects is significantly more than that in the absence of AC current, correspondingly, the inhibitory effect of the corrosion products is significantly weaker than that in the case without AC current. The corrosion at the coating defect at the initial stage of immersion is an electron transfer control process, and it is converted to a diffusion control process after soaking for 10 hours. With the increase of AC current intensity and immersion time the degree of coating peeling increases, and the depth and width of the pits increase.

Key words:  materials failure and protection      in situ      carbon steel      corrosion      AC current     
Received:  05 December 2019     
ZTFLH:  TG174.4  
Fund: Science and Technology Project of Inner Mongolia Power Company(2019-102)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.571     OR     https://www.cjmr.org/EN/Y2020/V34/I7/545

Fig.1  Schematic diagram of SECM scanning device
Fig.2  SECM image of samples soaked for different time without AC current (a) 0 h; (b) 5 h; (c) 10 h; (d) 24 h
Fig.3  SECM images of samples soaked for different time at current density of 50 A/m2 (a) 0 h; (b) 5 h; (c) 10 h; (d) 24 h
Fig.4  SECM images of samples soaked for different time at current density of 100 A/m2 (a) 0 h; (b) 5 h; (c) 10 h; (d) 24 h
Fig.5  SECM images of samples soaked for different time at current density of 300 A/m2 (a) 0 h; (b) 5 h; (c) 10 h; (d) 24 h
AC current density/A·m-2Maximum anode current peak/pA
0 h5 h10 h24 h
061.467.698.8125.2
50 A/m2114.0236.0197.0308.0
100 A/m259.2151.0187.0385.0
300 A/m263.0178.0192.0437.0
Table 1  Maximum anode current peak for samples soaked for different time at different AC current densities
Fig.6  Probe scanning current for samples soaked for different time at different AC current densities (a) 50 A/m2; (b) 100 A/m2; (c) 300 A/m2
Fig.7  Nyquist plots and corresponding Bode plots for samples soaked for deferent time at different AC current densities (a, b) 50 A/m2; (c, d) 100 A/m2; (e, f) 300 A/m2
Fig.8  Equivalent circuit for the sample defect
AC current densityImmersion time

Cf

/μF·cm-2

Qd

Rf

/Ω·cm2

Rp

/Ω·cm2

Cd

/μF·cm-2

n
50 A/m20 h2.71×10-36.660.79164.38.95×104
5 h7.87×10-355.50.75116.96.17×104
10 h8.59×10-331.50.9545.9420.55
24 h3.72×10-3103.10.70119.35.06×104
100 A/m20 h2.71×10-36.660.79164.38.95×104
5 h3.90×10-38.090.80136.54.95×104
10 h1.12×10-22730.7036.551.51×104
24 h1.18×10-246.60.78114.65.65×104
300 A/m20 h8.33×10-39.650.77138.96.77×104
5 h1.49×10-294.90.7468.733.09×104
10 h15.968.40.6667.691.30×104
24 h9.06×10-371.80.75252.83.34×104
Table 2  Fitted values of the elements of the equivalent circuit
Fig.9  Change of Rp for samples soaked for deferent time at different AC current densities
AC current densityImmersion time
5 h10 h24 h
0 A/m215.525.450.8
50 A/m278.8115.2143.2
100 A/m285.6135.5154.1
300 A/m292.7153.1238.4
Table 3  Corrosion pit depth for samples soaked for different time at different AC current densities (μm)
[1] Jiang Z T, Du Y X, Dong L, et al. Effect of AC current on corrosion potential of Q235 steel [J]. Acta Metall. Sin., 2011, 47: 997
doi: 10.3724/SP.J.1037.2011.00040
(姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究 [J]. 金属学报, 2011, 47: 997)
doi: 10.3724/SP.J.1037.2011.00040
[2] Zhu M, Ma J, Yuan Y F, et al. Corrosion behavior of X65 pipeline steel with different microstructure in simulated solution of acidic soil under AC interference [J]. Trans. Mater. Heat Treat., 2018, 39(10): 67
(朱敏, 马俊, 袁永锋等. 交流干扰下不同组织X65钢在酸性土壤模拟溶液中的腐蚀行为 [J]. 材料热处理学报, 2018, 39(10): 67)
[3] Tang D Z, Du Y X, Lu M X. Recent advances in testing and risk assessment of ac interference with buried piplines [J]. Corros. Sci. Prot. Technol., 2018, 30: 311
(唐德志, 杜艳霞, 路民旭. 埋地管道交流干扰有效检测技术及风险评价方法最新研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 311)
[4] Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
(曹发和, 夏妍, 刘文娟等. SECM基本原理及其在金属腐蚀中的应用 [J]. 电化学, 2013, 19: 393)
[5] Liu H Y, Fan F R F, Lin C W, et al. Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution [J]. J. Am. Chem. Soc., 1986, 108: 3838
[6] Zhang M M, Meng J, Huang X Y, et al. Pitting corrosion behaviors of 304 stainless steel by studied spatial electrochemical scanning microscopy [J]. Corros. Prot., 2012, 33: 482
(张明明, 孟军, 黄晓义等. 利用SECM技术研究304不锈钢的点蚀行为 [J]. 腐蚀与防护, 2012, 33: 482)
[7] Zhou H R, Ma J, Li X G, et al. Corrosion study of pure aluminum in 0.6mol/L NaCl solution by SECM [J]. J. Aeronaut. Mater., 2009, 29(2): 8
(周和荣, 马坚, 李晓刚, 等. 纯铝在0.6mol/LNaCl溶液中腐蚀行为的SECM分析 [J]. 航空材料学报, 2009, 29(2): 8)
[8] Wang X Y. Study on Corrosion behavior of pure magnesium—based on scanning electrochemical microscopy generation/collection and feedback mode [D]. Hangzhou: Zhejiang University, 2015
(王新印. 纯镁腐蚀行为研究-基于扫描电化学显微镜产生/收集和反馈模式 [D]. 杭州: 浙江大学, 2015)
[9] González-García Y, García S J, Hughes A E, et al. A combined redox-competition and negative-feedback SECM study of self-healing anticorrosive coatings [J]. Electrochem. Commun., 2011, 13: 1094
[10] Souto R M, González-García Y, González S. Evaluation of the corrosion performance of coil-coated steel sheet as studied by scanning electrochemical microscopy [J]. Corros. Sci., 2008, 50: 1637
[11] Iannucci L, Ríos-Rojas J F, Angelini E, et al. Electrochemical characterization of innovative hybrid coatings for metallic artefacts [J]. Eur. Phys. J. Plus, 2018, 133: 522
doi: 10.1140/epjp/i2018-12368-3
[12] Vega J, Scheerer H, Andersohn G, et al. Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods [J]. Corros. Sci., 2018, 133: 240
[13] Wang X Y, Xia Y, Zhou Y R, et al. Corrosion behavior of pure mg based on generation/collection and feedback modes of scanning electrochemical microscopy [J]. Acta Metall. Sin., 2015, 51: 631
(王新印, 夏妍, 周亚茹等. 基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为 [J]. 金属学报, 2015, 51: 631)
[14] Ding Q M, Li Z L. Effect of alternating stray current on degradation of epoxy resin coating in immersion [J]. Corros. Prot., 2018, 39: 776
(丁清苗, 李自力. 交流杂散电流对环氧树脂涂层浸泡失效的影响 [J]. 腐蚀与防护, 2018, 39: 776)
[15] Li Z L, Ding Q M, Zhang Y F, et al. Optimal cathodic protection potential for X70 steel with AC interference determined by electrochemical methods [J]. Corros. Prot., 2010, 31: 436
(李自力, 丁清苗, 张迎芳等. 用电化学方法建立交流干扰下X70钢的最佳阴极保护电位 [J]. 腐蚀与防护, 2010, 31: 436)
[16] Tu C Y, Xu C, Wang X H, et al. Effects of stray AC on corrosion of 3-layer polyethylene coated X70 steel and cathodic delamination of coating with defects [J]. Total Corros. Control, 2017, 31(8): 13
(涂承媛, 徐成, 王新华等. 交流杂散电流对涂覆3PE涂层的X70钢腐蚀及涂层剥离行为影响规律研究 [J]. 全面腐蚀控制, 2017, 31(8): 13)
[17] Fan Y M. Study on the influence of stray currenton the metal corrosion behavior underdisbonded coating [D]. Tianjin: Civil Aviation University of China, 2017
(范玥铭. 杂散电流对剥离涂层下金属腐蚀行为影响的研究 [D]. 天津: 中国民航大学, 2017)
[18] Chen X, Li X G, Du C W, et al. Effects of solution environments on corrosion behaviors of X70 steels under simulated disbonded coating [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 35
(陈旭, 李晓刚, 杜翠薇等. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 35)
[19] Wang Y, Yan Y G, Dong C F, et al. Effect of stray current on corrosion of Q235, 16Mn and X70 steels with damaged coating [J]. Corros. Sci. Prot. Technol., 2010, 22: 117
(王燕, 闫永贵, 董超芳等. 涂层破损时杂散电流对Q235、16Mn、X70钢腐蚀的影响 [J]. 腐蚀科学与防护技术, 2010, 22: 117)
[20] Shen T. Effect of AC on corrosion behavior of buried metal pipeline under stripped coating defects [D]. Tianjin: Civil Aviation University of China, 2019
(沈陶. AC对剥离涂层缺陷下埋地金属管道腐蚀行为的影响研究 [D]. 天津: 中国民航大学, 2019)
[21] Wang X H, Wang Z Q, Chen Y C, et al. Effect of ac stray current on corrosion and stripping behavior of x70 pipeline steel under 3PE coating [J]. Surface Technol., 2018, 47(11): 142
(王新华, 王祖全, 陈迎春等. 交流杂散电流对X70管线钢3PE防腐层下腐蚀及剥离行为的影响 [J]. 表面技术, 2018, 47(11): 142)
[1] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[3] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[4] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[5] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[6] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[7] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[8] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[9] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[10] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[11] YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 81-89.
[12] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[13] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[14] SONG Jianyu, LI Xiang, WANG Qian, SHEN Longhai, QI Dongli, FENG Yu, CHEN Jianjin. Effect of Magnetic Field Direction on Suede Structure of Alkaline Solution Corroded Polysilicon[J]. 材料研究学报, 2021, 35(9): 682-688.
[15] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
No Suggested Reading articles found!